當(dāng)前位置:首頁 > 百科知識 > 光通訊 > 正文

光纖放大器 又名:OpticalFiberAmpler

光纖放大器(Optical Fiber Ampler),能將光信號進(jìn)行功率放大的一種光器件。根據(jù)它在光纖線路中的位置和作用,一般分為中繼放大、前置放大和功率放大三種。

光纖放大器(Optical Fiber Ampler),能將光信號進(jìn)行功率放大的一種光器件。根據(jù)它在光纖線路中的位置和作用,一般分為中繼放大、前置放大和功率放大三種。

簡介

        光纖放大器技術(shù)就是在光纖的纖芯中摻入能產(chǎn)生激光的稀土元素,通過激光器提供的直流光激勵,使通過的光信號得到放大。傳統(tǒng)的光纖傳輸系統(tǒng)是采用光-電-光再生中繼器,這種中繼設(shè)備影響系統(tǒng)的穩(wěn)定性和可靠性,為去掉上述轉(zhuǎn)換過程,直接在光路上對信號進(jìn)行放大傳輸,就要用一個全光傳輸型中繼器來代替這種再生中繼器。適用的設(shè)備有摻鉺光纖放大器(EDFA)、摻鐠光纖放大器(PDFA)、摻鈮光纖放大器(NDFA)。目前光放大技術(shù)主要是采用EDFA。

分類

        90年代初期,摻鉺光纖放大器(EDFA)的研制成功,打破了光纖通信傳輸距離受光纖損耗的限制,使全光通信距離延長至幾千公里,給光纖通信帶來了革命性的變化,被譽(yù)為光通信發(fā)展的一個"里程碑"。那么,究竟什么是光纖放大器呢? 根據(jù)放大機(jī)制不同,OFA可分為兩大類。

摻稀土OFA

        制作光纖時,采用特殊工藝,在光纖芯層沉積中摻入極小濃度的稀土元素,如鉺、鐠或銣等離子,可制作出相應(yīng)的摻鉺、摻鐠或摻銣光纖。光纖中摻雜離子在受到泵浦光激勵后躍遷到亞穩(wěn)定的高激發(fā)態(tài),在信號光誘導(dǎo)下,產(chǎn)生受激輻射,形成對信號光的相干放大。這種OFA實(shí)質(zhì)上是一種特殊的激光器,它的工作腔是一段摻稀土粒子光纖,泵浦光源一般采用半導(dǎo)體激光器

        當(dāng)前光纖通信系統(tǒng)工作在兩個低損耗窗口:1.55μm波段和1.31μm波段。選擇不同的摻雜元素,可使放大器工作在不同窗口。

(1)摻鉺光纖放大器(EDFA)

        摻鉺光纖放大器由一段摻鉺光纖和泵浦光源組成,如圖1所示。摻鉺光纖是在石英光纖的纖芯中摻入適量濃度的鉺離子(Er3+),泵浦源的作用是給鉺離子提供能量,將它從低能級"抽運(yùn)"到高能級,使其具有光學(xué)

        增益功能。沒有泵浦光作用時,Er3+離子的能量狀態(tài)稱為基態(tài);吸收泵浦光能量后,Er3+便處于較高能量狀態(tài),即由基態(tài)躍遷到激發(fā)態(tài)。由于處于該高能態(tài)的壽命很短,將迅速過渡到較低的激發(fā)態(tài),Er3+處于激發(fā)態(tài)的壽命長得多,被稱為亞穩(wěn)態(tài)。當(dāng)Er3+從亞穩(wěn)激發(fā)態(tài)躍遷回到基態(tài)時,多出來的能量轉(zhuǎn)變?yōu)闊晒廨椛?,輻射光的波長由亞穩(wěn)態(tài)與基態(tài)的能級差決定。在1550nm波段上,在泵浦源不斷作用下,處于亞穩(wěn)激發(fā)態(tài)的Er3+不斷累積,其數(shù)量可超過仍處于基態(tài)的離子數(shù)。當(dāng)高能態(tài)上的粒子數(shù)超過低能態(tài)上的粒子數(shù)時,達(dá)到了粒子數(shù)反轉(zhuǎn)狀態(tài)。只有在這種狀態(tài)下才可能有光放大作用。如入射光信號的光子能量相當(dāng)于基態(tài)和亞穩(wěn)態(tài)之間的能量差,即其光波長與上述輻射光的波長相同,它將同時引發(fā)由基態(tài)→亞穩(wěn)態(tài)的吸收躍遷和由亞穩(wěn)態(tài)→基態(tài)的發(fā)射躍遷,吸收躍遷吸收光能,發(fā)射躍遷發(fā)射光能,吸收和發(fā)射光能的大小各與基態(tài)和亞穩(wěn)態(tài)的粒子密度成正比。由于粒子數(shù)反轉(zhuǎn)的緣故,總的效果是發(fā)射的光能超過吸收的光能,這就使入射光增強(qiáng),而得到了光放大。

       摻雜光纖放大器的一個重要問題是選擇合適的泵浦源。摻Er3+石英光纖在550、650、810、980和1480nm等處存在吸收光譜帶,原則上都可選為泵浦光波長。但由于980nm和l 480mn光波長的光泵浦效率最高,故多采用。980nm泵浦源選用InGaAs/AlGaAs半導(dǎo)體激光器,1 480nm泵浦源選用GalnAsP/Inp半導(dǎo)體激光器,它們的光功率一般為數(shù)十至上百亳瓦。采用980nm的泵浦源還有噪聲低的優(yōu)點(diǎn),而1 480mn泵浦源由于與信號光波長相近,耦合方便。

        光纖通信的另一重要的低損耗窗口是1 300nm波段。摻釹離子(Nd3+)的氯化物玻璃光纖可構(gòu)成工作于這一波段的摻釹光纖放大器。

        光纖放大器要求增益高,工作頻帶寬、噪聲低。摻鉺光纖放大器已實(shí)用化,其典型值:小信號增益30dB,帶寬32nm,噪聲系數(shù)5dB。

        摻鉺光纖放大器是光纖通信技術(shù)的一項(xiàng)重大突破,它可免除常規(guī)光纖通信技術(shù)在中繼站進(jìn)行光一電一光變換而延長中繼距離,使常規(guī)的光纖通信提高到一個新的水平。對推動密集波分復(fù)用、頻分復(fù)用、光孤子光纖通信、光纖本地網(wǎng)和光纖寬帶綜合業(yè)務(wù)數(shù)據(jù)網(wǎng)的發(fā)展起著舉足輕重的作用。

(2)摻鐠光纖放大器(PDFA)

        PDFA工作在1.31μm波段,已敷設(shè)的光纖90%都工作在這一窗口。PDFA對現(xiàn)有光通信線路的升級和擴(kuò)容有重要的意義。目前已經(jīng)研制出低噪聲、高增益的PDFA,但是它的泵浦效率不高,工作性能不穩(wěn)定,增益對溫度敏感,離實(shí)用還有一段距離。

非線性O(shè)FA

        非線性O(shè)FA是利用光纖的非線性效應(yīng)實(shí)現(xiàn)對信號光放大的一種激光放大器。當(dāng)光纖中光功率密度達(dá)到一定閾值時,將產(chǎn)生受激拉曼散射(SRS)或受激布里淵散射(SBS),形成對信號光的相干放大。非線性O(shè)FA可相應(yīng)分為拉曼光纖放大器(SRA)和布里淵光纖放大器(BRA)。目前研制出的SRA尚未商用化。

        OFA的研制始于80年代,并在90年代初取得重大突破。在現(xiàn)代光通信系統(tǒng)設(shè)計(jì)中,如何有效地提高光信號傳輸距離,減少中繼站數(shù)目,降低系統(tǒng)成本,一直是人們不斷探索的目標(biāo)。OFA是解決這一問題的關(guān)鍵器件,它的研制和改進(jìn)在全球范圍內(nèi)仍方興未艾。

        隨著密集波分復(fù)用(DWDM)技術(shù)、光纖放大技術(shù),包括摻鉺光纖放大器(EDFA)、分布喇曼光纖放大器(DRFA)、半導(dǎo)體放大器(SOA)和光時分復(fù)用(OTDM)技術(shù)的發(fā)展和廣泛應(yīng)用,光纖通信技術(shù)不斷向著更高速率、更大容量的通信系統(tǒng)發(fā)展,而先進(jìn)的光纖制造技術(shù)既能保持穩(wěn)定、可靠的傳輸以及足夠的富余度,又能滿足光通信對大寬帶的需求,并減少非線性損傷。

專利技術(shù)

1、CN00101089.1 增益平化的光纖放大器

2、CN00102134.6 含有增益控制電路的摻鉺光纖放大器

3、CN00118698.1 根據(jù)信道數(shù)穩(wěn)定光纖放大器輸出功率的設(shè)備和方法

4、CN00118701.5 使用種子光束的長帶光纖放大器

5、CN00125366.2 用于包層泵浦光纖放大器和激光器的多光束合波分波器

6、CN00803494.X 光纖放大器增益的平坦化

7、CN01101299.4 光纖放大器

8、CN01102975.7 波分復(fù)用系統(tǒng)中用于抑制光纖放大器暫態(tài)效應(yīng)的裝置

9、CN01110050.8 增益固定型光纖放大器

10、CN01111399.5 用于光放大器的光纖,光纖放大器和光纖激光器

11、CN01116610.X 長波段光纖放大器

12、CN01121851.7 光纖放大器、激勵光源模塊和光學(xué)系統(tǒng)

13、CN01126962.6 自適應(yīng)智能化光纖放大器

14、CN01141272.0 改進(jìn)的寬帶攙鉺光纖放大器

15、CN01143920.3 放大用光纖和包含它的光纖放大器

16、CN01145384.2 一種摻鉺光纖放大器增益控制裝置

17、CN01218161.7 光纖放大器

18、CN01244678.5 多模摻餌光纖放大器

19、CN01800418.0 利用雙端口波長選擇耦合器的光纖放大器

20、CN01810531.9 含有分布和分立式拉曼光纖放大器的放大器系統(tǒng)

21、CN02100850.7 光纖放大器和使用該光纖放大器的光通信系統(tǒng)

22、CN02103451.6 半導(dǎo)體激光組件、采用它的光纖放大器與光通信系統(tǒng)

23、CN02104782.0 利用泵浦光提高S-帶寬的轉(zhuǎn)換效率的摻雜銩的光纖放大器

24、CN02112491.4 一種用于摻鉺光纖放大器的模擬增益控制裝置及其方法

25、CN02124992.X 支持單纖雙向光傳輸?shù)墓饫w放大器連接方法及其裝置

26、CN02130396.7 偏振波保持型光纖放大器和光放大器

27、CN02131442.X 喇曼摻鉺光纖放大器的增益譜均衡的方法

28、CN02131443.8 增益譜可控的喇曼光纖放大器及其控制方法

29、CN02131553.1 色散減小的喇曼光纖放大器

30、CN02134904.5 智能化摻鉺光纖放大器

31、CN02136511.3 全波段拉曼光纖放大器

32、CN02136512.1 多波段稀土摻雜光纖放大器

33、CN02136672.1 多稀土摻雜超寬帶光纖放大器

34、CN02145135.4 低噪聲、高增益、高平坦的長波段摻鉺光纖放大器

35、CN02147092.8 與拉曼光纖放大器和半導(dǎo)體光放大器耦合的混合光放大器

36、CN02147746.9 喇曼增益實(shí)時動態(tài)控制與補(bǔ)償?shù)姆椒捌淅饫w放大器

37、CN02152708.3 寬帶摻餌光纖放大器和波分復(fù)用光傳輸系統(tǒng)

38、CN02157822.2 增益平整光纖放大器

39、CN02237118.4 一種摻鉺光纖放大器

40、CN02261388.9 低噪聲、高增益、高平坦的長波段摻鉺光纖放大器

41、CN02279587.1 一種增益平坦的喇曼光纖放大器

42、CN02284355.8 喇曼增益實(shí)時動態(tài)控制與補(bǔ)償?shù)睦饫w放大器

43、CN03111442.3 應(yīng)用量子相干實(shí)現(xiàn)摻鉺光纖放大器增益平坦化的方法

44、CN03114820.4 圓柱形排布的脈沖雙包層光纖放大器

45、CN03116604.0 低噪聲指數(shù)增益鉗制摻鉺光纖放大器

46、CN03118554.1 具有對稱曲面反射鏡的包層泵浦光纖激光器和光纖放大器

47、CN03120173.3 寬帶光纖放大器

48、CN03122222.6 用于光纖放大器的集成雙泵浦組合器

49、CN03128223.7 適合于城域網(wǎng)智能型雙通道光纖放大器

50、CN03129580.0 具有動態(tài)增益波動控制的拉曼光纖放大器

51、CN03140894.X L波段摻鉺光纖放大器溫度相關(guān)增益譜特性的補(bǔ)償方法

52、CN03141899.6 帶狀微片自調(diào)Q雙包層光纖放大器

53、CN03142111.3 多波長刺猬量子點(diǎn)雙包層光纖放大器件

54、CN03145078.4 長波長光纖放大器

55、CN03145128.4 光纖放大器

56、CN03147376.8 一種摻餌光纖放大器EDFA增益控制方法

57、CN03153086.9 具有自動功率控制功能的光纖放大器及自動功率控制方法

58、CN03156729.0 寬帶光纖放大器

59、CN03159572.3 用遺傳算法設(shè)計(jì)摻鉺光纖及摻鉺光纖放大器

60、CN03228090.4 圓柱形排布的脈沖雙包層光纖放大器

61、CN03255275.0 一種混合型寬帶光纖放大器

62、CN03256077.X 帶狀微片自調(diào)Q雙包層光纖放大器

63、CN03277433.8 基于雙程雙向結(jié)構(gòu)的分立式拉曼光纖放大器

64、CN03805598.8 使用壓低型光纖放大器的通信系統(tǒng)和分波段放大裝置

65、CN03810246.3 抽運(yùn)光纖放大器中的方法和裝置

66、CN03815009.3 半導(dǎo)體激光器裝置、半導(dǎo)體激光器模塊及光纖放大器

67、CN03815394.7 光纖及采用了光纖的光纖耦合器、摻鉺光纖放大器、光導(dǎo)波路

68、CN89104084.6 光纖放大器

69、CN90106952.3 具有寬帶信號波長的雙芯有源光纖放大器

70、CN90109044.1 一種具有寬激勵頻帶的有源光纖放大器及相關(guān)的有源光纖

71、CN90108705.X 具有寬帶信號波長的有源光纖放大器

72、CN91100697.4 具有雙芯部分的寬信號波長帶有源光纖放大器

73、CN93114035.8 帶有雙光柵的光纖放大器

74、CN94116614.7 有效利用泵功率的光纖放大器

75、CN94191377.5 用于波長范圍約1300nm左右的光纖放大器的光波導(dǎo)

76、CN95108476.3 混合光纖放大器

77、CN95191692.0 增益控制光纖放大器

78、CN95214226.0 帶有前置耦合-隔離放大環(huán)的級聯(lián)光纖放大器

79、CN96191114.X 雙芯光導(dǎo)纖維及制造這種光導(dǎo)纖維、雙芯光纖激光器和雙芯光纖放大器的工藝方法

80、CN96197531.8 從光纖放大器發(fā)送監(jiān)測消息

81、CN96203208.5 分配泵浦級聯(lián)光纖放大器

82、CN97101816.2 光纖放大器

83、CN97115418.X 用雙向分劃和激發(fā)泵激功率放大傳輸光的摻鉺光纖放大器

84、CN97116141.0 自動跟蹤和濾波發(fā)射光波長的鉺攙雜光纖放大器及其方法

85、CN97126130.X 增益平衡光纖放大器

86、CN97126135.0 采用混合抽運(yùn)光束的反饋型光纖放大器

87、CN97126139.3 光纖放大器

88、CN97180844.9 用于孤立子的分布式光纖放大器

89、CN97193928.4 用于波長復(fù)用的光纖放大器

90、CN98102559.5 低噪聲光纖放大器

91、CN98102664.8 帶吸收器的光纖放大器

92、CN98102749.0 實(shí)現(xiàn)小信號高增益的光纖放大器

93、CN98103086.6 光纖放大器的封裝裝置

94、CN98117158.3 多信道光纖放大器的增益測量裝置

95、CN98117378.0 多信道三級光纖放大器

96、CN98119908.9 光纖放大器中的雙模擬 數(shù)字式自動功率控制裝置

97、CN98124939.6 光纖放大器

98、CN98126022.5 使用同步基準(zhǔn)濾光器的光纖放大器

99、CN98802107.2 具有平坦增益曲線的多級光纖放大器

100、CN98802424.1 具有減小的溫度相關(guān)增益平滑度失真的光纖放大器

101、CN98802520.5 增益可變的光纖放大器

102、CN99100673.9 高效帶寬加倍及增益整平石英光纖放大器

103、CN99109442.5 適合于長波光信號的鉺攙雜光纖放大器

104、CN99109617.7 使用殘余抽運(yùn)光的兩級摻鉺光纖放大器

105、CN99111242.3 長波長光纖放大器

106、CN99118405.X 提高功率轉(zhuǎn)換效率的長頻帶光纖放大器

107、CN99120853.6 具有高功率轉(zhuǎn)換效率的并行光纖放大器

108、CN99121614.8 每信道輸出定值功率的波分復(fù)用摻鉺光纖放大器及放大法

109、CN99125043.5 對于每條信道具有恒定輸出功率的光纖放大器及放大方法

110、CN99126104.6 光纖放大器及帶光纖放大器的傳輸系統(tǒng)

111、CN99800964.4 摻鉺光纖放大器中有中間級衰減器的增益傾斜控制

112、CN99804148.3 光放大用光纖和光纖放大器

113、CN99804388.5 性能改進(jìn)的增益平坦的摻鉺光纖放大器

114、CN99804664.7 具有受控增益的光纖放大器

115、CN99804821.6 具有增益平坦濾波器的光纖放大器

116、CN99810977.0 通過雙腔增益控制對摻餌光纖放大器進(jìn)行增益控制和整形

117、CN99816301.5 用于控制增益平坦度的光纖放大器

118、CN200310103654. 9 寬帶光纖放大器

119、CN200310108304.1 光纖光柵增強(qiáng)的L波段雙通摻鉺光纖放大器

120、CN200310109356.0 喇曼光纖放大器中雙重瑞利散射噪聲的抑制方法

121、CN200310111684.4 用自發(fā)輻射光源為輔助泵浦的增益位移型摻銩光纖放大器

122、CN200380104659.1 光纖放大器模塊

123、CN200410010985.2 基于啁啾光纖光柵的摻鉺光纖放大器的增益平坦器

124、CN200410013020.9 喇曼光纖放大器泵浦模塊

125、CN200410013022.8 喇曼光纖放大器

126、CN200410016347.1 摻鉺光纖放大器增益特性的監(jiān)控裝置

127、CN200410041335.4 反射型分立式拉曼光纖放大器

128、CN200410053306.X 集中泵浦光纖激光器和光纖放大器

129、CN200410056638.3 從光纖放大器發(fā)送監(jiān)測消息

130、CN200410074686.5 具有光纖放大器的無源光網(wǎng)絡(luò)

131、CN200410084637.X 可調(diào)諧窄線寬啁啾光纖放大器

132、CN200410090103.8 與拉曼光纖放大器和半導(dǎo)體光放大器耦合的混合光放大器

133、CN200420072621.2 喇曼光纖放大器的溫度控制裝置

134、CN200420072622.7 基于折射率引導(dǎo)型光子晶體光纖的分立式喇曼光纖放大器

135、CN200420076637.0 能夠保護(hù)光纖端面的喇曼光纖放大器

136、CN200420089577.6 光纖放大器盒

137、CN200480001015.4 光纖激光器、自發(fā)發(fā)射光源及光纖放大器

138、CN200480023836.8 具有誤差校正的光纖放大器

139、CN200510016194.5 S波段分立式喇曼光纖放大器

140、CN200510033192.7 一種寬帶光纖放大器

141、CN200510049180.3 納米晶體量子點(diǎn)光纖及光纖放大器

142、CN200510064108.8 光放大用光纖,光纖放大器和光通信系統(tǒng)

143、CN200510075542.6 摻過渡金屬光纖放大器

144、CN200510108724.9 光纖放大器的質(zhì)量監(jiān)控

145、CN200510135431.X 可調(diào)式光纖放大器與鐳射裝置

146、CN200510136601.6 分離基態(tài)模截止可調(diào)式光纖放大器與鐳射

147、CN200520130429.9 智能化摻鉺光纖放大器

148、CN200610019644.0 高效循環(huán)注入包層泵浦光纖放大器

149、CN200610087568.7 一種增益可間隔設(shè)置的摻鉺光纖放大器

150、CN200610093071.6 光纖放大器和使用該光纖放大器的光通信系統(tǒng)

151、CN200610097660.1 用于光纖放大器的控制裝置

152、CN200610116368.X 量子點(diǎn)半導(dǎo)體納米材料漸逝波光纖放大器及其制造方法

153、CN200620075080.8 光纖放大器的定位裝置

154、CN200710008569.2 一種高性能的自由空間光纖放大器模塊

155、CN200710020497.3 一種矩形多層嵌套的摻雜光子晶體光纖放大器

156、CN200710020498.8 一種同軸層狀喇曼光子晶體光纖放大器

157、CN200710048255.5 時域選通式光纖放大器

158、CN200710051539.X 增益可控多級摻鉺光纖放大器噪聲指數(shù)的改善方法

159、CN200710057737.7 用于包層泵浦光纖放大器的光纖合波器

160、CN200710063827.7 一種窄脈沖光纖放大器

應(yīng)用市場

        近年來,隨著信息和通信技術(shù)的飛速發(fā)展,光纖放大器的研究和發(fā)展又進(jìn)一步擴(kuò)大了增益帶寬,將光纖通信系統(tǒng)推向了高速率、大容量、長距離方向發(fā)展。由于光纖放大器的獨(dú)特性能,在DWDM傳輸系統(tǒng)、光纖CATV和光纖接入網(wǎng)中有著廣泛的應(yīng)用。密集波分復(fù)用系統(tǒng)在光纖傳輸系統(tǒng)中已成為技術(shù)主流,作為DWDM系統(tǒng)核心器件之一的光纖放大器在其應(yīng)用中將得到迅速發(fā)展,這主要是由于光纖放大器有足夠的增益帶寬,它和WDM技術(shù)相結(jié)合可迅速簡便地?cái)U(kuò)大現(xiàn)有光纜系統(tǒng)的通信容量,延長中繼距離。在光纖接入網(wǎng)中,盡管用戶系統(tǒng)的距離較短,但用戶網(wǎng)的分支太多,需要用光纖放大器來提高光信號的功率以補(bǔ)償光分配器造成的光損耗和提高用戶的數(shù)量,降低用戶網(wǎng)的建設(shè)成本。在光纖CATV系統(tǒng)中,隨著其規(guī)模的不斷擴(kuò)大,其鏈路的傳輸距離不斷增長,光路的傳輸損耗也不斷增加,將光纖放大器應(yīng)用在光纖CATV系統(tǒng)中不但可提高光功率,補(bǔ)償鏈路的損耗,增加光用戶終端,而且簡化了系統(tǒng)結(jié)構(gòu),降低了系統(tǒng)成本,加快了光纖CATV的發(fā)展。最近,美國CIBC World Market 公司的相關(guān)人士對摻鉺光纖放大器(EDFA)、光纖拉曼放大器(FRA)、半導(dǎo)體光放大器(SOA)這三類光放大器的市場狀況分別進(jìn)行了分析:EDFA從1994年開始商用,現(xiàn)已成為DWDM系統(tǒng)的關(guān)鍵器件,且市場正在快速增長,其中Corning、Lucent和JDS Uniphase等許多公司都參和了這一市場的競爭,預(yù)計(jì)全球EDFA市場將從1999年的13億美元增長到2004年的96億美元,銷售量將以年均43[%]的速度遞增;光纖拉曼放大器近年來備受人們關(guān)注,已成為開發(fā)的熱點(diǎn),盡管預(yù)計(jì)最近一兩年內(nèi)光纖拉曼放大器還不會在陸地光纜系統(tǒng)中廣泛應(yīng)用,但其市場規(guī)模仍將從1999年的約330萬美元猛增到2004年的7.5億美元;而半導(dǎo)體光放大器(SOA)自應(yīng)變量子阱材料的SOA研制成功以來,其研制速度和應(yīng)用開發(fā)明顯加快,且SOA市場可望于2001年開始起動,此后會迅速擴(kuò)大,2004年將達(dá)到2億美元的規(guī)模。

發(fā)展方向

        由于超高速率、大容量、長距離光纖通信系統(tǒng)的發(fā)展,對作為光纖通信領(lǐng)域的關(guān)鍵器件――光纖放大器在功率、帶寬和增益平坦方面提出了新的要求,因此,在未來的光纖通信網(wǎng)絡(luò)中,光纖放大器的發(fā)展方向主要有以下幾個方面:

(1)EDFA從C-Band向L-Band發(fā)展;

(2)寬頻譜、大功率的光纖拉曼放大器;

(3)將局部平坦的EDFA和光纖拉曼放大器進(jìn)行串聯(lián)使用,獲得超寬帶的平坦增益放大器;

(4)發(fā)展應(yīng)變補(bǔ)償?shù)臒o偏振、單片集成、光橫向連接的半導(dǎo)體光放大器光開關(guān);

(5)研發(fā)具有動態(tài)增益平坦技術(shù)的光纖放大器;

使用提示

故障解決

        光纖放大器,面板顯示和實(shí)際輸出是同步的,如果面板顯示正常,則說明光放大器輸出正常,如果這種情況下測試光放大器時光功率下降或不夠,最大的可能性有以下幾種:

1.光功率計(jì)不準(zhǔn),國產(chǎn)的光功率計(jì)只能測試光功率輸出較小的設(shè)備,不能測試大功率輸出的EDFA,測試光放大器的光功率計(jì)必須原裝進(jìn)口,不能把不準(zhǔn)確的儀器當(dāng)作標(biāo)準(zhǔn)來使用。

2.輸出口的法蘭損壞,這個可能性較小。

3.用戶使用不當(dāng),在機(jī)器工作時插拔,燒傷光放大器輸出的尾纖頭,造成光放大器輸出功率下降,如發(fā)生這種情況,只要重新熔接光放大器的輸出接頭即可。

4.用戶使用的尾纖質(zhì)量太差,纖芯過長,在插入尾纖后擦傷光放大器的輸出接頭,這個現(xiàn)象是第一次測試是好的,第二次插入再次測試時就光功率下降了,解決這個問題也只要重新熔接光放大器的輸出接頭就可,

5.光源的波長不對,如果1550nm光發(fā)射機(jī)的波長有偏差,會造成光放大器的輸 出光功率不夠,也會造成面板顯示偏小。

6.輸入光放大器的光功率較小,如果低于標(biāo)準(zhǔn)值時可能會造成光功率變小,同時面板顯示也會變小。

注意事項(xiàng)

1.切勿將光纖輸出口指向人體,尤其是眼睛,以免造成損傷。

2.切勿在通電狀態(tài)下進(jìn)行路由的連接,以免因操作不當(dāng)造成輸出尾纖端面燒傷。

3.由于產(chǎn)品的輸出功率較大,使用時請關(guān)注本機(jī)的工作室溫,保持通風(fēng)良好。


內(nèi)容來自百科網(wǎng)