增材制造是指基于離散-堆積原理,由零件三維數(shù)據(jù)驅(qū)動(dòng)直接制造零件的科學(xué)技術(shù)體系,改變了通過(guò)對(duì)原材料進(jìn)行切削、組裝進(jìn)行生產(chǎn)的加工模式,實(shí)現(xiàn)了隨時(shí)、隨地、按需生產(chǎn)。
3D打印通常是采用數(shù)字技術(shù)材料打印機(jī)來(lái)實(shí)現(xiàn)的。常在模具制造、工業(yè)設(shè)計(jì)等領(lǐng)域被用于制造模型,后逐漸用于一些產(chǎn)品的直接制造,已經(jīng)有使用這種技術(shù)打印而成的零部件。該技術(shù)在珠寶、鞋類(lèi)、工業(yè)設(shè)計(jì)、建筑、航空航天以及其他領(lǐng)域都有所應(yīng)用。
概述
增材制造技術(shù)是指基于離散-堆積原理,由零件三維數(shù)據(jù)驅(qū)動(dòng)直接制造零件的科學(xué)技術(shù)體系?;诓煌姆诸?lèi)原則和理解方式,增材制造技術(shù)還有快速原型、快速成形、快速制造、3D打印等多種稱(chēng)謂,其內(nèi)涵仍在不斷深化,外延也不斷擴(kuò)展,這里所說(shuō)的“增材制造”與“快速成形”、“快速制造”意義相同。
工業(yè)化的LSF-V大型激光立體成形裝備所謂數(shù)字化增材制造技術(shù)就是一種三維實(shí)體快速自由成形制造新技術(shù),它綜合了計(jì)算機(jī)的圖形處理、數(shù)字化信息和控制、激光技術(shù)、機(jī)電技術(shù)和材料技術(shù)等多項(xiàng)高技術(shù)的優(yōu)勢(shì),學(xué)者們對(duì)其有多種描述。西北工業(yè)大學(xué)凝固技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室的黃衛(wèi)東教授稱(chēng)這種新技術(shù)為“數(shù)字化增材制造”,中國(guó)機(jī)械工程學(xué)會(huì)宋天虎秘書(shū)長(zhǎng)稱(chēng)其為“增量化制造”,其實(shí)它就是不久前引起社會(huì)廣泛關(guān)注的“三維打印”技術(shù)的一種。西方媒體把這種實(shí)體自由成形制造技術(shù)譽(yù)為將帶來(lái)“第三次工業(yè)革命”的新技術(shù)。
關(guān)鍵技術(shù)
一是材料單元的控制技術(shù)。即如何控制材料單元在堆積過(guò)程中的物理與化學(xué)變化是一個(gè)難點(diǎn),例如金屬直接成型中,激光熔化的微小熔池的尺寸和外界氣氛控制直接影響制造精度和制件性能。
二是設(shè)備的再涂層技術(shù)。增材制造的自動(dòng)化涂層是材料累加的必要工序,再涂層的工藝方法直接決定了零件在累加方向的精度和質(zhì)量。分層厚度向0.01mm發(fā)展,控制更小的層厚及其穩(wěn)定性是提高制件精度和降低表面粗糙度的關(guān)鍵。
三是高效制造技術(shù)。增材制造在向大尺寸構(gòu)件制造技術(shù)發(fā)展,例如金屬激光直接制造飛機(jī)上的鈦合金框睴結(jié)構(gòu)件,框睴結(jié)構(gòu)件長(zhǎng)度可達(dá)6m,制作時(shí)間過(guò)長(zhǎng),如何實(shí)現(xiàn)多激光束同步制造,提高制造效率,保證同步增材組織之間的一致性和制造結(jié)合區(qū)域質(zhì)量是發(fā)展的難點(diǎn)。
此外,為提高效率,增材制造與傳統(tǒng)切削制造結(jié)合,發(fā)展材料累加制造與材料去除制造復(fù)合制造技術(shù)方法也是發(fā)展的方向和關(guān)鍵技術(shù)。
技術(shù)應(yīng)用
應(yīng)用領(lǐng)域
以激光束、電子束、等離子或離子束為熱源,加熱材料使之結(jié)合、直接制造零件的方法,稱(chēng)為高能束流快速制造,是增材制造領(lǐng)域的重要分支,在工業(yè)領(lǐng)域最為常見(jiàn)。
在航空航天工業(yè)的增材制造技術(shù)領(lǐng)域,金屬、非金屬或金屬基復(fù)合材料的高能束流快速制造是當(dāng)前發(fā)展最快的研究方向。
經(jīng)過(guò)20多年的發(fā)展,增材制造經(jīng)歷了從萌芽到產(chǎn)業(yè)化、從原型展示到零件直接制造的過(guò)程,發(fā)展十分迅猛。美國(guó)專(zhuān)門(mén)從事增材制造技術(shù)咨詢(xún)服務(wù)的Wohlers協(xié)會(huì)在2012年度報(bào)告中,對(duì)各行業(yè)的應(yīng)用情況進(jìn)行了分析。在過(guò)去的幾年中,航空零件制造和醫(yī)學(xué)應(yīng)用是增長(zhǎng)最快的應(yīng)用領(lǐng)域。2012年產(chǎn)能規(guī)模將增長(zhǎng)25%至21.4億美元,2019年將達(dá)到60億美元。增材制造技術(shù)正處于發(fā)展期,具有旺盛的生命力,還在不斷發(fā)展;隨著技術(shù)發(fā)展,應(yīng)用領(lǐng)域也將越來(lái)越廣泛。
航空領(lǐng)域應(yīng)用
高速、高機(jī)動(dòng)性、長(zhǎng)續(xù)航能力、安全高效低成本運(yùn)行等苛刻服役條件對(duì)飛行器結(jié)構(gòu)設(shè)計(jì)、材料和制造提出了更高要求。輕量化、整體化、長(zhǎng)壽命、高可靠性、結(jié)構(gòu)功能一體化以及低成本運(yùn)行成為結(jié)構(gòu)設(shè)計(jì)、材料應(yīng)用和制造技術(shù)共同面臨的嚴(yán)峻挑戰(zhàn),這取決于結(jié)構(gòu)設(shè)計(jì)、結(jié)構(gòu)材料和現(xiàn)代制造技術(shù)的進(jìn)步與創(chuàng)新。
首先,增材制造技術(shù)能夠滿足航空武器裝備研制的低成本、短周期需求。隨著技術(shù)的進(jìn)步,為了減輕機(jī)體重量,提高機(jī)體壽命,降低制造成本,飛機(jī)結(jié)構(gòu)中大型整體金屬構(gòu)件的使用越來(lái)越多。大型整體鈦合金結(jié)構(gòu)制造技術(shù)已經(jīng)成為現(xiàn)代飛機(jī)制造工藝先進(jìn)性的重要標(biāo)志之一。美國(guó)F-22后機(jī)身加強(qiáng)框、F-14和“狂風(fēng)”的中央翼盒均采用了整體鈦合金結(jié)構(gòu)。大型金屬結(jié)構(gòu)傳統(tǒng)制造方法是鍛造再機(jī)械加工,但能用于制造大型或超大型金屬鍛坯的裝備較為稀缺,高昂的模具費(fèi)用和較長(zhǎng)的制造周期仍難滿足新型號(hào)的快速低成本研制的需求;另外,一些大型結(jié)構(gòu)還具有復(fù)雜的形狀或特殊規(guī)格,用鍛造方法難以制造。而增量制造技術(shù)對(duì)零件結(jié)構(gòu)尺寸不敏感,可以制造超大、超厚、復(fù)雜型腔等特殊結(jié)構(gòu)。除了大型結(jié)構(gòu),還有一些具有極其復(fù)雜外形的中小型零件,如帶有空間曲面及密集復(fù)雜孔道結(jié)構(gòu)等,用其他方法很難制造,而用高能束流選區(qū)制造技術(shù)可以實(shí)現(xiàn)零件的凈成形,僅需拋光即可裝機(jī)使用。傳統(tǒng)制造行業(yè)中,單件、小批量的超規(guī)格產(chǎn)品往往成為制約整機(jī)生產(chǎn)的瓶頸,通過(guò)增量制造技術(shù)能夠?qū)崿F(xiàn)以相對(duì)較低的成本提供這類(lèi)產(chǎn)品。
據(jù)統(tǒng)計(jì),我國(guó)大型航空鈦合金零件的材料利用率非常低,平均不超過(guò)10 %;同時(shí),模鍛、鑄造還需要大量的工裝模具,由此帶來(lái)研制成本的上升。通過(guò)高能束流增量制造技術(shù),可以節(jié)省材料三分之二以上,數(shù)控加工時(shí)間減少一半以上,同時(shí)無(wú)須模具,從而能夠?qū)⒀兄瞥杀居绕涫鞘准?、小批量的研制成本大大降低,?jié)省國(guó)家寶貴的科研經(jīng)費(fèi)。
通過(guò)大量使用基于金屬粉末和絲材的高能束流增材制造技術(shù)生產(chǎn)飛機(jī)零件,從而實(shí)現(xiàn)結(jié)構(gòu)的整體化,降低成本和周期,達(dá)到“快速反應(yīng),無(wú)模敏捷制造”的目的。隨著我國(guó)綜合國(guó)力的提升和科學(xué)技術(shù)的進(jìn)步,我國(guó)經(jīng)濟(jì)體已經(jīng)處于世界經(jīng)濟(jì)體前列,與發(fā)達(dá)國(guó)家的一樣,保證研制速度、加快裝備更新速度,急需要這種新型無(wú)模敏捷制造技術(shù)——金屬結(jié)構(gòu)快速成形直接制造技術(shù)。
其次,增材制造技術(shù)有助于促進(jìn)設(shè)計(jì)-生產(chǎn)過(guò)程從平面思維向立體思維的轉(zhuǎn)變。傳統(tǒng)制造思維是先從使用目的形成三維構(gòu)想,轉(zhuǎn)化成二維圖紙,再制造成三維實(shí)體。在空間維度轉(zhuǎn)換過(guò)程中,差錯(cuò)、干涉、非最優(yōu)化等現(xiàn)象一直存在,而對(duì)于極度復(fù)雜的三維空間結(jié)構(gòu),無(wú)論是三維構(gòu)想還是二維圖紙化已十分困難。計(jì)算機(jī)輔助設(shè)計(jì)(CAD)為三維構(gòu)想提供了重要工具,但虛擬數(shù)字三維構(gòu)型仍然不能完全推演出實(shí)際結(jié)構(gòu)的裝配特性、物理特征、運(yùn)動(dòng)特征等諸多屬性。采用增量制造技術(shù),實(shí)現(xiàn)三維設(shè)計(jì)、三維檢驗(yàn)與優(yōu)化,甚至三維直接制造,可以擺脫二維制造思想的束縛,直接面向零件的三維屬性進(jìn)行設(shè)計(jì)與生產(chǎn),大大簡(jiǎn)化設(shè)計(jì)流程,從而促進(jìn)產(chǎn)品的技術(shù)更新與性能優(yōu)化。在飛機(jī)結(jié)構(gòu)設(shè)計(jì)時(shí),設(shè)計(jì)者既要考慮結(jié)構(gòu)與功能,還要考慮制造工藝,增材制造的最終目標(biāo)是解放零件制造對(duì)設(shè)計(jì)者的思想束縛,使飛機(jī)結(jié)構(gòu)設(shè)計(jì)師將精力集中在如何更好實(shí)現(xiàn)功能的優(yōu)化,而非零件的制造上。在以往的大量實(shí)踐中,利用增量制造技術(shù),快速準(zhǔn)確地制造并驗(yàn)證設(shè)計(jì)思想在飛機(jī)關(guān)鍵零部件的研制過(guò)程中已經(jīng)發(fā)揮了重要的作用。另一個(gè)重要的應(yīng)用是原型制造,即構(gòu)建模型,用于設(shè)計(jì)評(píng)估,例如風(fēng)洞模型,通過(guò)增材制造迅速生產(chǎn)出模型,可以大大加快“設(shè)計(jì)-驗(yàn)證”迭代循環(huán)。
再次,增材制造技術(shù)能夠改造現(xiàn)有的技術(shù)形態(tài),促進(jìn)制造技術(shù)提升。利用增量制造技術(shù)提升現(xiàn)有制造技術(shù)水平的典型的應(yīng)用是鑄造行業(yè)。利用快速原型技術(shù)制造蠟?zāi)?梢詫⑸a(chǎn)效率提高數(shù)十倍,而產(chǎn)品質(zhì)量和一致性也得到大大提升;利用快速制模技術(shù)可以三維打印出用于金屬制造的砂型,大大提高了生產(chǎn)效率和質(zhì)量。在鑄造行業(yè)采用增量制造快速制模已漸成趨勢(shì)。
發(fā)展趨勢(shì)
國(guó)外發(fā)展現(xiàn)狀
歐美發(fā)達(dá)國(guó)家紛紛制定了發(fā)展和推動(dòng)增材制造技術(shù)的國(guó)家戰(zhàn)略和規(guī)劃,增材制造技術(shù)已受到政府、研究機(jī)構(gòu)、企業(yè)和媒體的廣泛關(guān)注。2012年3月,美國(guó)白宮宣布了振興美國(guó)制造的新舉措,將投資10億美元幫助美國(guó)制造體系的改革。其中,白宮提出實(shí)現(xiàn)該項(xiàng)計(jì)劃的三大背景技術(shù)包括了增材制造,強(qiáng)調(diào)了通過(guò)改善增材制造材料、裝備及標(biāo)準(zhǔn),實(shí)現(xiàn)創(chuàng)新設(shè)計(jì)的小批量、低成本數(shù)字化制造。2012年8月,美國(guó)增材制造創(chuàng)新研究所成立,聯(lián)合了賓夕法尼亞州西部、俄亥俄州東部和弗吉尼亞州西部的14所大學(xué)、40余家企業(yè)、11家非營(yíng)利機(jī)構(gòu)和專(zhuān)業(yè)協(xié)會(huì)。
英國(guó)政府自2011年開(kāi)始持續(xù)增大對(duì)增材制造技術(shù)的研發(fā)經(jīng)費(fèi)。以前僅有拉夫堡大學(xué)一個(gè)增材制造研究中,諾丁漢大學(xué), 謝菲爾德大學(xué)、??巳卮髮W(xué)和曼徹斯特大學(xué)等相繼建立了增材制造研究中心。英國(guó)工程與物理科學(xué)研究委員會(huì)中設(shè)有增材制造研究中心,參與機(jī)構(gòu)包括拉夫堡大學(xué)、伯明翰大學(xué)、英國(guó)國(guó)家物理實(shí)驗(yàn)室、波音公司以及德國(guó)EOS公司等15家知名大學(xué)、研究機(jī)構(gòu)及企業(yè)。
除了英美外,其他一些發(fā)達(dá)國(guó)家也積極采取措施,以推動(dòng)增材制造技術(shù)的發(fā)展。德國(guó)建立了直接制造研究中心, 主要研究和推動(dòng)增材制造技術(shù)在航空航天領(lǐng)域中結(jié)構(gòu)輕量化方面的應(yīng)用;法國(guó)增材制造協(xié)會(huì)致力于增材制造技術(shù)標(biāo)準(zhǔn)的研究;在政府資助下,西班牙啟動(dòng)了一項(xiàng)發(fā)展增材制造的專(zhuān)項(xiàng),研究?jī)?nèi)容包括增材制造共性技術(shù)、材料、技術(shù)交流及商業(yè)模式等四方面內(nèi)容;澳大利亞政府于2012年2月宣布支持一項(xiàng)航空航天領(lǐng)域革命性的項(xiàng)目“微型發(fā)動(dòng)機(jī)增材制造技術(shù)”,該項(xiàng)目使用增材制造技術(shù)制造航空航天領(lǐng)域微型發(fā)動(dòng)機(jī)零部件;日本政府也很重視增材制造技術(shù)的發(fā)展,通過(guò)優(yōu)惠政策和大量資金鼓勵(lì)產(chǎn)學(xué)研用緊密結(jié)合,有力促進(jìn)該技術(shù)在航空航天等領(lǐng)域的應(yīng)用。
國(guó)內(nèi)發(fā)展現(xiàn)狀
大型整體鈦合金關(guān)鍵結(jié)構(gòu)件成形制造技術(shù)被國(guó)內(nèi)外公認(rèn)為是對(duì)飛機(jī)工業(yè)裝備研制與生產(chǎn)具有重要影響的核心關(guān)鍵制造技術(shù)之一。西北工業(yè)大學(xué)凝固技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室已經(jīng)建立了系列激光熔覆成形與修復(fù)裝備,可滿足大型機(jī)械裝備的大型零件及難拆卸零件的原位修復(fù)和再制造。應(yīng)用該技術(shù)實(shí)現(xiàn)了C919 飛機(jī)大型鈦合金零件激光立體成形制造。民用飛機(jī)越來(lái)越多地采用了大型整體金屬結(jié)構(gòu),飛機(jī)零件主要是整體毛坯件和整體薄壁結(jié)構(gòu)件,傳統(tǒng)成形方法非常困難。商飛決定采用先進(jìn)的激光立體成形技術(shù)來(lái)解決C919飛機(jī)大型復(fù)雜薄壁鈦合金結(jié)構(gòu)件的制造。西北工業(yè)大學(xué)采用激光成形技術(shù)制造了最大尺寸達(dá)2.83m的機(jī)翼緣條零件,最大變形量<1mm,實(shí)現(xiàn)了大型鈦合金復(fù)雜薄壁結(jié)構(gòu)件的精密成形技術(shù),相比現(xiàn)有技術(shù)可大大加快制造效率和精度,顯著降低生產(chǎn)成本。
北航在金屬直接制造方面開(kāi)展了長(zhǎng)期的研究工作,突破了鈦合金、超高強(qiáng)度鋼等難加工大型整體關(guān)鍵構(gòu)件激光成形工藝、成套裝備和應(yīng)用關(guān)鍵技術(shù),解決了大型整體金屬構(gòu)件激光成形過(guò)程零件變形與開(kāi)裂“瓶頸難題”和內(nèi)部缺陷和內(nèi)部質(zhì)量控制及其無(wú)損檢驗(yàn)關(guān)鍵技術(shù),飛機(jī)構(gòu)件綜合力學(xué)性能達(dá)到或超過(guò)鈦合金模鍛件,已研制生產(chǎn)出了我國(guó)飛機(jī)裝備中迄今尺寸最大、結(jié)構(gòu)最復(fù)雜的鈦合金及超高強(qiáng)度鋼等高性能關(guān)鍵整體構(gòu)件,并在大型客機(jī)C919等多型重點(diǎn)型號(hào)飛機(jī)研制生產(chǎn)中得到應(yīng)用。
西安交大以研究光固化快速成型(SLA)技術(shù)為主,于1997年研制并銷(xiāo)售了國(guó)內(nèi)第一臺(tái)光固化快速成型機(jī);并分別于2000年、2007年成立了教育部快速成形制造工程研究中心和快速制造國(guó)家工程研究中心,建立了一套支撐產(chǎn)品快速開(kāi)發(fā)的快速制造系統(tǒng),研制、生產(chǎn)和銷(xiāo)售多種型號(hào)的激光快速成型設(shè)備、快速模具設(shè)備及三維反求設(shè)備,產(chǎn)品遠(yuǎn)銷(xiāo)印度、俄羅斯、肯尼亞等國(guó),成為具有國(guó)際競(jìng)爭(zhēng)力的快速成型設(shè)備制造單位。
西安交大在新技術(shù)研發(fā)方面主要開(kāi)展了LED紫外快速成型機(jī)技術(shù)、陶瓷零件光固化制造技術(shù),鑄型制造技術(shù)、生物組織制造技術(shù)、金屬熔覆制造技術(shù)和復(fù)合材料制造技術(shù)的研究。在陶瓷零件制造的研究中,研制了一種基于硅溶膠的水基陶瓷漿料光固化快速成型工藝,實(shí)現(xiàn)了光子晶體、一體化鑄型等復(fù)雜陶瓷零件的快速制造。
西安交大與中國(guó)空氣動(dòng)力研究與發(fā)展中心及成都飛機(jī)設(shè)計(jì)研究所合作開(kāi)展了風(fēng)洞模型制造技術(shù)的研究,圍繞測(cè)壓模型、測(cè)力模型、顫振模型和氣彈模型等方面進(jìn)行了研究工作。設(shè)計(jì)了樹(shù)脂—金屬?gòu)?fù)合模型的結(jié)構(gòu)方案,采用有限元方法計(jì)算校核樹(shù)脂—金屬?gòu)?fù)合模型的強(qiáng)度、剛度以及固有頻率。通過(guò)低速風(fēng)洞試驗(yàn),研究了復(fù)合模型的氣動(dòng)特性,并與金屬模型試驗(yàn)數(shù)據(jù)相對(duì)比。強(qiáng)度校核試驗(yàn)顯示,模型的整體性能良好,滿足低速風(fēng)洞的試驗(yàn)要求,研制的復(fù)合模型在低速風(fēng)洞試驗(yàn)下具有良好的前景。復(fù)合材料構(gòu)件是航空制造技術(shù)未來(lái)的發(fā)展方向,西安交大研究了大型復(fù)合材料構(gòu)件低能電子束原位固化纖維鋪放制造設(shè)備與技術(shù),將低能電子束固化技術(shù)與纖維自動(dòng)鋪放技術(shù)相結(jié)合,研究開(kāi)發(fā)了一種無(wú)需熱壓罐的大型復(fù)合材料構(gòu)件高效率綠色制造方法,可使制造過(guò)程能耗降低70%,節(jié)省原材料15%,并提高了復(fù)合材料成型制造過(guò)程的可控性、可重復(fù)性,為我國(guó)復(fù)合材料構(gòu)件綠色制造提供了新的自動(dòng)化制造方法與工藝。
上海理工大學(xué)“增材制造國(guó)際實(shí)驗(yàn)室”通過(guò)整建制引進(jìn)海外著名科學(xué)家(院士)團(tuán)隊(duì),澳大利亞工程院院士吳鑫華,澳大利亞科學(xué)院、工程院院士、中國(guó)工程院外籍院士余艾冰,美國(guó)科學(xué)院院士Rodney R. Boyer,美國(guó)工程院院士James C. Williams接受我校聘任,分別擔(dān)任我?!霸霾闹圃靽?guó)際實(shí)驗(yàn)室”主任和方向帶頭人。
AM已成為先進(jìn)制造技術(shù)的一個(gè)重要的發(fā)展方向,其發(fā)展趨勢(shì)有三:
(1)復(fù)雜零件的精密鑄造技術(shù)應(yīng)用;
(2)金屬零件直接制造方向發(fā)展,制造大尺寸航空零部件;
(3)向組織與結(jié)構(gòu)一體化制造發(fā)展。未來(lái)需要解決的關(guān)鍵技術(shù)包括精度控制技術(shù)、大尺寸構(gòu)件高效制造技術(shù)、復(fù)合材料零件制造技術(shù)。AM技術(shù)的發(fā)展將有力地提高航空制造的創(chuàng)新能力,支撐我國(guó)由制造大國(guó)向制造強(qiáng)國(guó)發(fā)展。
我國(guó)在電子、電氣增材制造技術(shù)上取得了重要進(jìn)展。稱(chēng)為立體電路技術(shù)(SEA,SLS+LDS)。電子電器領(lǐng)域增材技術(shù)是建立了現(xiàn)有增材技術(shù)之上的一種綠色環(huán)保型電路成型技術(shù),有別于傳統(tǒng)二維平面型印制線路板。傳統(tǒng)的印制電路板是電子產(chǎn)業(yè)的糧食,一般采用傳統(tǒng)的不環(huán)保的減法制造工藝,即金屬導(dǎo)電線路是蝕刻銅箔后形成的,新一代增材制造技術(shù)采用加法工藝:用激光先在產(chǎn)品表面鐳射后,再在藥水中浸泡沉積上去。這類(lèi)技術(shù)與激光分層制造的增材制造相結(jié)合的一種途徑是:在SLS(激光選擇性燒結(jié))粉體中加入特殊組份,先3D打?。ㄔ霾闹圃斐尚停┰儆梦⒑?D立體電路激光機(jī)沿表面鐳射電路圖案,再化學(xué)鍍成金屬線路。
“立體電路制造工藝”涉及的SLS+LDS技術(shù)是我國(guó)本土企業(yè)發(fā)明的制造工藝。是增材制造在電子、電器產(chǎn)品領(lǐng)域分支應(yīng)用技術(shù)。也涉及到激光材料、激光機(jī)、后處理化學(xué)藥水等核心要素。立體電路技術(shù)已經(jīng)成為高端智能手機(jī)天線主要制造技術(shù),產(chǎn)業(yè)界已經(jīng)崛起了立體電路產(chǎn)業(yè)板塊。
打印過(guò)程
增材制造的一般工藝流程為:首先利用計(jì)算機(jī)輔助建模軟件(如CAD軟件)設(shè)計(jì)一個(gè)所需的三維模型。然后用切片軟件對(duì)此模型進(jìn)行數(shù)據(jù)處理,3D打印機(jī)將會(huì)在多種成型原理中選擇一種成型方式,根據(jù)這些工作路徑對(duì)原材料進(jìn)行逐層打印。當(dāng)二維薄片逐層堆疊在一起后,設(shè)計(jì)好的三維模型就制造成型了。最后,將打印好的模型取下后還需要進(jìn)行后處理,一般包括清洗和固化兩個(gè)步驟。
三維設(shè)計(jì)
三維打印的設(shè)計(jì)過(guò)程是:先通過(guò)計(jì)算機(jī)建模軟件建模,再將建成的三維模型“分區(qū)”成逐層的截面,即切片,從而指導(dǎo)打印機(jī)逐層打印。設(shè)計(jì)軟件和打印機(jī)之間協(xié)作的標(biāo)準(zhǔn)文件格式是STL文件格式。一個(gè)STL文件使用三角面來(lái)近似模擬物體的表面。三角面越小其生成的表面分辨率越高。PLY是一種通過(guò)掃描產(chǎn)生的三維文件的掃描器,其生成的VRML或者WRL文件經(jīng)常被用作全彩打印的輸入文件。
切片處理
切片軟件將三維模型按照設(shè)定的層厚進(jìn)行切片,將模型劃分為一系列的水平層。每一層都被轉(zhuǎn)換為一個(gè)二維圖像,描述了該層在打印時(shí)需要填充或構(gòu)建的區(qū)域。在切片軟件中,可以調(diào)整模型在打印平臺(tái)上的位置和角度,以?xún)?yōu)化打印效果和節(jié)省材料。
逐層打印
打印機(jī)通過(guò)讀取文件中的橫截面信息,用液體狀、粉狀或片狀的材料將這些截面逐層地打印出來(lái),再將各層截面以各種方式粘合起來(lái)從而制造出一個(gè)實(shí)體。這種技術(shù)的特點(diǎn)在于其幾乎可以造出任何形狀的物品。
打印機(jī)打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素/英寸)或者微米來(lái)計(jì)算的。一般的厚度為100微米,即0.1毫米,也有部分打印機(jī)如ObjetConnex 系列還有三維 Systems" ProJet 系列可以打印出16微米薄的一層。而平面方向則可以打印出跟激光打印機(jī)相近的分辨率。打印出來(lái)的“墨水滴”的直徑通常為50到100個(gè)微米。用傳統(tǒng)方法制造出一個(gè)模型通常需要數(shù)小時(shí)到數(shù)天,根據(jù)模型的尺寸以及復(fù)雜程度而定。而用三維打印的技術(shù)則可以將時(shí)間縮短為數(shù)個(gè)小時(shí),當(dāng)然其是由打印機(jī)的性能以及模型的尺寸和復(fù)雜程度而定的。傳統(tǒng)的制造技術(shù)如注塑法可以以較低的成本大量制造聚合物產(chǎn)品,而三維打印技術(shù)則可以以更快,更有彈性以及更低成本的辦法生產(chǎn)數(shù)量相對(duì)較少的產(chǎn)品。一個(gè)桌面尺寸的三維打印機(jī)就可以滿足設(shè)計(jì)者或概念開(kāi)發(fā)小組制造模型的需要。
有些技術(shù)可以同時(shí)使用多種材料進(jìn)行打印。有些技術(shù)在打印的過(guò)程中還會(huì)用到支撐物,比如在打印出一些有倒掛狀的物體時(shí)就需要用到一些易于除去的東西(如可溶物)作為支撐物。
后處理
將打印好的模型取下后進(jìn)行后處理,包括清洗固化,打磨,機(jī)械拋光,化學(xué)拋光,上色等步驟。
應(yīng)用領(lǐng)域
國(guó)際空間
2018年12月3日,這臺(tái)名為Organaut的突破性3D打印裝置,執(zhí)行“58號(hào)遠(yuǎn)征”(Expedition 58)任務(wù)的“聯(lián)盟MS-11”飛船送往國(guó)際空間站。打印機(jī)由Invitro的子公司“3D生物打印解決方案”(3D Bioprinting Solutions)公司建造。Invitro隨后收到了從國(guó)際空間站傳回的一組照片,通過(guò)這些照片可以看到老鼠甲狀腺是如何被打印出來(lái)的。美國(guó)計(jì)劃于2019年春季將生物打印機(jī)送上國(guó)際空間站。
2020年5月5日,中國(guó)首飛成功的長(zhǎng)征五號(hào)B運(yùn)載火箭上,搭載著新一代載人飛船試驗(yàn)船,船上還搭載了一臺(tái)“3D打印機(jī)”。這是中國(guó)首次太空3D打印實(shí)驗(yàn),也是國(guó)際上第一次在太空中開(kāi)展連續(xù)纖維增強(qiáng)復(fù)合材料的3D打印實(shí)驗(yàn)。
2024年6月20日消息,歐洲空間局科學(xué)家首次借助3D金屬打印技術(shù),在國(guó)際空間站上成功打印出一條小型S曲線。這一突破標(biāo)志著在軌制造領(lǐng)域的巨大飛躍。
海軍艦艇
2014年7月1日,美國(guó)海軍試驗(yàn)了利用3D打印等先進(jìn)制造技術(shù)快速制造艦艇零件,希望借此提升執(zhí)行任務(wù)速度并降低成本。
2014年6月24日至6月26日,美海軍在作戰(zhàn)指揮系統(tǒng)活動(dòng)中舉辦了第一屆制匯節(jié),開(kāi)展了一系列“打印艦艇”研討會(huì),并在此期間向水手及其他相關(guān)人員介紹了3D打印及增材制造技術(shù)。
美國(guó)海軍致力于未來(lái)在這方面培訓(xùn)水手。采用3D打印及其他先進(jìn)制造方法,能夠顯著提升執(zhí)行任務(wù)速度及預(yù)備狀態(tài),降低成本,避免從世界各地采購(gòu)艦船配件。
美國(guó)海軍作戰(zhàn)艦隊(duì)后勤科副科長(zhǎng)Phil Cullom表示,考慮到成本及海軍后勤及供應(yīng)鏈現(xiàn)存的漏洞,以及面臨的資源約束,先進(jìn)制造與3D打印的應(yīng)用越來(lái)越廣,他們?cè)O(shè)想了一個(gè)由技術(shù)嫻熟的水手支持的先進(jìn)制造商的全球網(wǎng)絡(luò),找出問(wèn)題并制造產(chǎn)品。
航天科技
2014年9月底,NASA預(yù)計(jì)將完成首臺(tái)成像望遠(yuǎn)鏡,所有元件基本全部通過(guò)3D打印技術(shù)制造。NASA也因此成為首家嘗試使用3D打印技術(shù)制造整臺(tái)儀器的單位。
這款太空望遠(yuǎn)鏡功能齊全,其50.8毫米的攝像頭使其能夠放進(jìn)立方體衛(wèi)星(CubeSat,一款微型衛(wèi)星)當(dāng)中。據(jù)了解,這款太空望遠(yuǎn)鏡的外管、外擋板及光學(xué)鏡架全部作為單獨(dú)的結(jié)構(gòu)直接打印而成,只有鏡面和鏡頭尚未實(shí)現(xiàn)。該儀器將于2015年開(kāi)展震動(dòng)和熱真空測(cè)試。
這款長(zhǎng)50.8毫米的望遠(yuǎn)鏡將全部由鋁和鈦制成,而且只需通過(guò)3D打印技術(shù)制造4個(gè)零件即可,相比而言,傳統(tǒng)制造方法所需的零件數(shù)是3D打印的5-10倍。此外,在3D打印的望遠(yuǎn)鏡中,可將用來(lái)減少望遠(yuǎn)鏡中雜散光的儀器擋板做成帶有角度的樣式,這是傳統(tǒng)制作方法在一個(gè)零件中所無(wú)法實(shí)現(xiàn)的。
2014年8月31日,美國(guó)宇航局的工程師們剛剛完成了3D打印火箭噴射器的測(cè)試,本項(xiàng)研究在于提高火箭發(fā)動(dòng)機(jī)某個(gè)組件的性能,由于噴射器內(nèi)液態(tài)氧和氣態(tài)氫一起混合反應(yīng),這里的燃燒溫度可達(dá)到6000華氏度,大約為3315攝氏度,可產(chǎn)生2萬(wàn)磅的推力,約為9噸左右,驗(yàn)證了3D打印技術(shù)在火箭發(fā)動(dòng)機(jī)制造上的可行性。本項(xiàng)測(cè)試工作位于阿拉巴馬亨茨維爾的美國(guó)宇航局馬歇爾太空飛行中心,這里擁有較為完善的火箭發(fā)動(dòng)機(jī)測(cè)試條件,工程師可驗(yàn)證3D打印部件在點(diǎn)火環(huán)境中的性能
制造火箭發(fā)動(dòng)機(jī)的噴射器需要精度較高的加工技術(shù),如果使用3D打印技術(shù),就可以降低制造上的復(fù)雜程度,在計(jì)算機(jī)中建立噴射器的三維圖像,打印的材料為金屬粉末和激光,在較高的溫度下,金屬粉末可被重新塑造成我們需要的樣子?;鸺l(fā)動(dòng)機(jī)中的噴射器內(nèi)有數(shù)十個(gè)噴射元件,要建造大小相似的元件需要一定的加工精度,該技術(shù)測(cè)試成功后將用于制造RS-25發(fā)動(dòng)機(jī),其作為美國(guó)宇航局未來(lái)太空發(fā)射系統(tǒng)的主要?jiǎng)恿?,該火箭可運(yùn)載宇航員超越近地軌道,進(jìn)入更遙遠(yuǎn)的深空。馬歇爾中心的工程部主任克里斯認(rèn)為3D打印技術(shù)在火箭發(fā)動(dòng)機(jī)噴油器上應(yīng)用只是第一步,我們的目的在于測(cè)試3D打印部件如何能徹底改變火箭的設(shè)計(jì)與制造,并提高系統(tǒng)的性能,更重要的是可以節(jié)省時(shí)間和成本,不太容易出現(xiàn)故障。本次測(cè)試中,兩具火箭噴射器進(jìn)行了點(diǎn)火,每次5秒,設(shè)計(jì)人員創(chuàng)建的復(fù)雜幾何流體模型允許氧氣和氫氣充分混合,壓力為每平方英寸1400磅。
2014年10月11日,英國(guó)一個(gè)發(fā)燒友團(tuán)隊(duì)用3D打印技術(shù)制出了一枚火箭,他們還準(zhǔn)備讓這個(gè)世界上第一個(gè)打印出來(lái)的火箭升空。該團(tuán)隊(duì)于當(dāng)?shù)貢r(shí)間在倫敦的辦公室向媒體介紹這個(gè)世界第一架用3D打印技術(shù)制造出的火箭。團(tuán)隊(duì)隊(duì)長(zhǎng)海恩斯說(shuō),有了3D打印技術(shù),要制造出高度復(fù)雜的形狀并不困難。就算要修改設(shè)計(jì)原型,只要在計(jì)算機(jī)輔助設(shè)計(jì)的軟件上做出修改,打印機(jī)將會(huì)做出相對(duì)的調(diào)整。這比之前的傳統(tǒng)制造方式方便許多。既然美國(guó)宇航局已經(jīng)在使用3D打印技術(shù)制造火箭的零件,3D打印技術(shù)的前景是十分光明的。
據(jù)介紹,這個(gè)名為“低軌道氦輔助導(dǎo)航”的工程項(xiàng)目由一家德國(guó)數(shù)據(jù)分析公司贊助。打印出的這枚火箭重3公斤,高度相當(dāng)于一般成年人身高,是該團(tuán)隊(duì)用4年時(shí)間、花了6000英鎊制造出來(lái)的。等一筆1.5萬(wàn)英鎊的資助確定之后,他們將于今年底在新墨西哥州的美國(guó)航天港發(fā)射該火箭。一個(gè)裝滿氦的巨型氣球?qū)鸦鸺嵘?0000米高空,裝置在火箭里的全球定位系統(tǒng)將啟動(dòng)火箭引擎,火箭噴射速度將達(dá)到每小時(shí)1610公里。之后,火箭上的自動(dòng)駕駛系統(tǒng)將引導(dǎo)火箭回返地球,而里頭的攝像機(jī)將把整個(gè)過(guò)程拍攝下來(lái)。
美國(guó)國(guó)家航空航天局(NASA)官網(wǎng)2015年4月21日?qǐng)?bào)道,NASA工程人員正通過(guò)利用增材制造技術(shù)制造首個(gè)全尺寸銅合金火箭發(fā)動(dòng)機(jī)零件以節(jié)約成本,NASA空間技術(shù)任務(wù)部負(fù)責(zé)人表示,這是航空航天領(lǐng)域3D打印技術(shù)應(yīng)用的新里程碑。
2015年6月22日?qǐng)?bào)道,國(guó)營(yíng)企業(yè)俄羅斯技術(shù)集團(tuán)公司以3D打印技術(shù)制造出一架無(wú)人機(jī)樣機(jī),重3.8公斤,翼展2.4米,飛行時(shí)速可達(dá)90至100公里,續(xù)航能力1至1.5小時(shí)。
公司發(fā)言人弗拉基米爾·庫(kù)塔霍夫介紹,公司用兩個(gè)半月實(shí)現(xiàn)了從概念到原型機(jī)的飛躍,實(shí)際生產(chǎn)耗時(shí)僅為31小時(shí),制造成本不到20萬(wàn)盧布(約合3700美元)。
2016年4月19日,中科院重慶綠色智能技術(shù)研究院3D打印技術(shù)研究中心對(duì)外宣布,經(jīng)過(guò)該院和中科院空間應(yīng)用中心兩年多的努力,并在法國(guó)波爾多完成拋物線失重飛行試驗(yàn),國(guó)內(nèi)首臺(tái)空間在軌3D打印機(jī)宣告研制成功。這臺(tái)3D打印機(jī)可打印最大零部件尺寸達(dá)200×130mm,它可以幫助宇航員在失重環(huán)境下自制所需的零件,大幅提高空間站實(shí)驗(yàn)的靈活性,減少空間站備品備件的種類(lèi)與數(shù)量和運(yùn)營(yíng)成本,降低空間站對(duì)地面補(bǔ)給的依賴(lài)性。
2023年3月22日,美國(guó)相對(duì)航天公司在佛羅里達(dá)州卡納維拉爾角發(fā)射一枚“3D打印火箭”,但火箭未能進(jìn)入預(yù)定軌道。這枚火箭高約33.5米,包括發(fā)動(dòng)機(jī)在內(nèi),火箭85%的組件由合金金屬材料3D打印而成,為全球首例。
醫(yī)學(xué)領(lǐng)域
醫(yī)學(xué)界的3D打印是根據(jù)患者需求進(jìn)行個(gè)性化護(hù)理的優(yōu)秀工具,可同時(shí)簡(jiǎn)化醫(yī)生、護(hù)士、藥劑師等專(zhuān)業(yè)人員的操作。配備3D打印機(jī)的未來(lái)醫(yī)院將能復(fù)制數(shù)萬(wàn)個(gè)醫(yī)療設(shè)備的模型,其中包含描述制造過(guò)程的技術(shù)文件和產(chǎn)品符合要求的驗(yàn)證。目前,3D打印在醫(yī)療保健行業(yè)中的一些應(yīng)用主要是打印設(shè)備(輔助設(shè)備、注射器、手術(shù)器械);打印解剖結(jié)構(gòu)以方便術(shù)前培訓(xùn);打印定制部件(假肢、牙冠、移植物)以及生物打印。
3D打印肝臟模型
日本筑波大學(xué)和大日本印刷公司組成的科研團(tuán)隊(duì)2015年7月8日宣布,已研發(fā)出用3D打印機(jī)低價(jià)制作可以看清血管等內(nèi)部結(jié)構(gòu)的肝臟立體模型的方法。據(jù)稱(chēng),該方法如果投入應(yīng)用就可以為每位患者制作模型,有助于術(shù)前確認(rèn)手術(shù)順序以及向患者說(shuō)明治療方法。
這種模型是根據(jù)CT等醫(yī)療檢查獲得患者數(shù)據(jù)用3D打印機(jī)制作的。模型按照表面外側(cè)線條呈現(xiàn)肝臟整體形狀,詳細(xì)地再現(xiàn)其內(nèi)部的血管和腫瘤。
由于肝臟模型內(nèi)部基本是空洞,重要血管等的位置一目了然。據(jù)稱(chēng),制作模型需要少量?jī)r(jià)格不菲的樹(shù)脂材料,使原本約30萬(wàn)至40萬(wàn)日元(約合人民幣1.5萬(wàn)至2萬(wàn)元)的制作費(fèi)降到原先的三分之一以下。
利用3D打印技術(shù)制作的內(nèi)臟器官模型主要用于研究,由于價(jià)格高昂,在臨床上沒(méi)有得到普及??蒲袌F(tuán)隊(duì)表示,他們一方面爭(zhēng)取到2016年度實(shí)現(xiàn)肝臟模型的實(shí)際應(yīng)用,另一方面將推進(jìn)對(duì)胰臟等器官模型制作技術(shù)的研發(fā)。
3D打印頭蓋骨
2014年8月28日,46歲的周至農(nóng)民胡師傅在自家蓋房子時(shí),從3層樓墜落后砸到一堆木頭上,左腦蓋被撞碎,在當(dāng)?shù)蒯t(yī)院手術(shù)后,胡師傅雖然性命無(wú)損,但左腦蓋凹陷,在別人眼里成了個(gè)“半頭人”。
除了面容異于常人,事故還傷了胡師傅的視力和語(yǔ)言功能。醫(yī)生為幫其恢復(fù)形象,采用3D打印技術(shù)輔助設(shè)計(jì)缺損顱骨外形,設(shè)計(jì)了鈦金屬網(wǎng)重建缺損顱眶骨,制作出缺損的左“腦蓋”,最終實(shí)現(xiàn)左右對(duì)稱(chēng)。
醫(yī)生稱(chēng)手術(shù)約需5至10小時(shí),除了用鈦網(wǎng)支撐起左邊腦蓋外,還需要從腿部取肌肉進(jìn)行填補(bǔ)。手術(shù)后,胡師傅的容貌將恢復(fù),至于語(yǔ)言功能還得術(shù)后看恢復(fù)情況。
3D打印脊椎植入人體
2014年8月,北京大學(xué)研究團(tuán)隊(duì)成功地為一名12歲男孩植入了3D打印脊椎,這屬全球首例。據(jù)了解,這位小男孩的脊椎在一次足球受傷之后長(zhǎng)出了一顆惡性腫瘤,醫(yī)生不得不選擇移除掉腫瘤所在的脊椎。不過(guò),這次的手術(shù)比較特殊的是,醫(yī)生并未采用傳統(tǒng)的脊椎移植手術(shù),而是嘗試先進(jìn)的3D打印技術(shù)。
研究人員表示,這種植入物可以跟現(xiàn)有骨骼非常好地結(jié)合起來(lái),而且還能縮短病人的康復(fù)時(shí)間。由于植入的3D脊椎可以很好地跟周?chē)墓趋澜Y(jié)合在一起,所以它并不需要太多的“錨定”。此外,研究人員還在上面設(shè)立了微孔洞,它能幫助骨骼在合金之間生長(zhǎng),換言之,植入進(jìn)去的3D打印脊椎將跟原脊柱牢牢地生長(zhǎng)在一起,這也意味著未來(lái)不會(huì)發(fā)生松動(dòng)的情況。
3D打印手掌治療殘疾
2014年10月,醫(yī)生和科學(xué)家們使用3D打印技術(shù)為英國(guó)蘇格蘭一名5歲女童裝上手掌。
這名女童名為海莉·弗雷澤,出生時(shí)左臂就有殘疾,沒(méi)有手掌,只有手腕。在醫(yī)生和科學(xué)家的合作下,為她設(shè)計(jì)了專(zhuān)用假肢并成功安裝。
3D打印心臟救活2周大先心病嬰兒
2014年10月13日,紐約長(zhǎng)老會(huì)醫(yī)院的埃米爾·巴查博士(Dr.Emile Bacha)醫(yī)生就講述了他使用3D打印的心臟救活一名2周大嬰兒的故事。這名嬰兒患有先天性心臟缺陷,它會(huì)在心臟內(nèi)部制造“大量的洞”。在過(guò)去,這種類(lèi)型的手術(shù)需要停掉心臟,將其打開(kāi)并進(jìn)行觀察,然后在很短的時(shí)間內(nèi)來(lái)決定接下來(lái)應(yīng)該做什么。
但有了3D打印技術(shù)之后,巴查醫(yī)生就可以在手術(shù)之前制作出心臟的模型,從而使他的團(tuán)隊(duì)可以對(duì)其進(jìn)行檢查,然后決定在手術(shù)當(dāng)中到底應(yīng)該做什么。這名嬰兒原本需要進(jìn)行3-4次手術(shù),而現(xiàn)在一次就夠了,這名原本被認(rèn)為壽命有限的嬰兒可以過(guò)上正常的生活。
巴查醫(yī)生說(shuō),他使用了嬰兒的MRI數(shù)據(jù)和3D打印技術(shù)制作了這個(gè)心臟模型。整個(gè)制作過(guò)程共花費(fèi)了數(shù)千美元,不過(guò)他預(yù)計(jì)制作價(jià)格會(huì)在未來(lái)降低。
3D打印技術(shù)能夠讓醫(yī)生提前練習(xí),從而減少病人在手術(shù)臺(tái)上的時(shí)間。3D模型有助于減少手術(shù)步驟,使手術(shù)變得更為安全。
2015年1月,在邁阿密兒童醫(yī)院,有一位患有“完全型肺靜脈畸形引流(TAPVC)”的4歲女孩Adanelie Gonzalez,由于疾病她的呼吸困難免疫系統(tǒng)薄弱,如果不實(shí)施矯正手術(shù)僅能存活數(shù)周甚至數(shù)日。
心血管外科醫(yī)生借助3D心臟模型的幫助,通過(guò)對(duì)小女孩心臟的完全復(fù)制3D模型,成功地制定出了一個(gè)復(fù)雜的矯正手術(shù)方案。最終根據(jù)方案,成功地為小女孩實(shí)施了永久手術(shù),現(xiàn)在小女孩的血液恢復(fù)正常流動(dòng),身體在治療中逐漸恢復(fù)正常。
3D打印制藥
2015年8月5日,首款由Aprecia制藥公司采用3D打印技術(shù)制備的SPRITAM(左乙拉西坦,levetiracetam)速溶片得到美國(guó)食品藥品監(jiān)督管理局(FDA)上市批準(zhǔn),并將于2016年正式售賣(mài)。這意味著3D打印技術(shù)繼打印人體器官后進(jìn)一步向制藥領(lǐng)域邁進(jìn),對(duì)未來(lái)實(shí)現(xiàn)精準(zhǔn)性制藥、針對(duì)性制藥有重大的意義。該款獲批上市的“左乙拉西坦速溶片”采用了Aprecia公司自主知識(shí)產(chǎn)權(quán)的ZipDose3D打印技術(shù)。
通過(guò)3D打印制藥生產(chǎn)出來(lái)的藥片內(nèi)部具有豐富的孔洞,具有極高的內(nèi)表面積,故能在短時(shí)間內(nèi)迅速被少量的水融化。這樣的特性給某些具有吞咽性障礙的患者帶來(lái)了福音。
這種設(shè)想主要針對(duì)病人對(duì)藥品數(shù)量的需求問(wèn)題,可以有效地減少由于藥品庫(kù)存而引發(fā)的一系列藥品發(fā)潮變質(zhì)、過(guò)期等問(wèn)題。事實(shí)上,3D打印制藥最重要的突破是它能進(jìn)一步實(shí)現(xiàn)為病人量身定做藥品的夢(mèng)想。
3D打印胸腔
最近科學(xué)家們?yōu)閭鹘y(tǒng)的3D打印身體部件增添了一種鈦制的胸骨和胸腔—3D打印胸腔。
這些3D打印部件的幸運(yùn)接受者是一位54歲的西班牙人,他患有一種胸壁肉瘤,這種腫瘤形成于骨骼、軟組織和軟骨當(dāng)中。醫(yī)生不得不切除病人的胸骨和部分肋骨,以此阻止癌細(xì)胞擴(kuò)散。
這些切除的部位需要找到替代品,在正常情況下所使用的金屬盤(pán)會(huì)隨著時(shí)間變得不牢固,并容易引發(fā)并發(fā)癥。澳大利亞的CSIRO公司創(chuàng)造了一種鈦制的胸骨和肋骨,與患者的幾何學(xué)結(jié)構(gòu)完全吻合。
CSIRO公司根據(jù)病人的CT掃描設(shè)計(jì)并制造所需的身體部件。工作人員會(huì)借助CAD軟件設(shè)計(jì)身體部分,輸入到3D打印機(jī)中。手術(shù)完成兩周后,病人就被允許離開(kāi)醫(yī)院了,而且一切狀況良好。
3D血管打印機(jī)
2015年10月,中國(guó)863計(jì)劃3D打印血管項(xiàng)目取得重大突破,世界首創(chuàng)的3D生物血管打印機(jī)由四川藍(lán)光英諾生物科技股份有限公司成功研制問(wèn)世。
該款血管打印機(jī)性能先進(jìn),僅僅2分鐘便打出10厘米長(zhǎng)的血管。不同于市面上現(xiàn)有的3D生物打印機(jī),3D生物血管打印機(jī)可以打印出血管獨(dú)有的中空結(jié)構(gòu)、多層不同種類(lèi)細(xì)胞,這是世界首創(chuàng)。
美3D打印生物工程脊髓
2018年8月,美國(guó)明尼蘇達(dá)大學(xué)研究人員開(kāi)發(fā)出一種新的多細(xì)胞神經(jīng)組織工程方法,利用3D打印設(shè)備制出生物工程脊髓。研究人員稱(chēng),該技術(shù)有朝一日或可幫助長(zhǎng)期遭受脊髓損傷困擾的患者恢復(fù)某些功能。
美3D打印心臟肌泵
2020年7月,美國(guó)明尼蘇達(dá)大學(xué)研究人員在最新一期《循環(huán)研究》雜志上發(fā)表報(bào)告稱(chēng),他們?cè)趯?shí)驗(yàn)室中用人類(lèi)細(xì)胞3D打印出了功能正常的厘米級(jí)人體心臟肌泵模型。研究人員稱(chēng),這種能夠發(fā)揮正常功能的心臟肌泵模型系統(tǒng)對(duì)于心臟病研究來(lái)說(shuō)具有重要意義,而他們的成果向制造人類(lèi)心臟這樣的大型腔室模型邁出了關(guān)鍵一步。
3D打印乳腺癌腫瘤模型
2022年,美國(guó)科學(xué)家首次成功地對(duì)乳腺癌腫瘤進(jìn)行了3D生物打印。
房屋建筑
2014年8月,10幢3D打印建筑在上海張江高新青浦園區(qū)內(nèi)交付使用,作為當(dāng)?shù)貏?dòng)遷工程的辦公用房。這些“打印”的建筑墻體是用建筑垃圾制成的特殊“油墨”,按照電腦設(shè)計(jì)的圖紙和方案,經(jīng)一臺(tái)大型3D打印機(jī)層層疊加噴繪而成,10幢小屋的建筑過(guò)程僅花費(fèi)24小時(shí)。
2014年9月5日,世界各地的建筑師們正在為打造全球首款3D打印房屋而競(jìng)賽。3D打印房屋在住房容納能力和房屋定制方面具有意義深遠(yuǎn)的突破。在荷蘭首都阿姆斯特丹,一個(gè)建筑師團(tuán)隊(duì)已經(jīng)開(kāi)始制造全球首棟3D打印房屋,而且采用的建筑材料是可再生的生物基材料。這棟建筑名為“運(yùn)河住宅(Canal House)”,由13間房屋組成。這個(gè)項(xiàng)目位于阿姆斯特丹北部運(yùn)河的一塊空地上,有望3年內(nèi)完工。在建中的“運(yùn)河住宅”已經(jīng)成了公共博物館,美國(guó)總統(tǒng)奧巴馬曾經(jīng)到那里參觀。荷蘭DUS建筑師漢斯·韋爾默朗(Hans Vermeulen)在接受BI采訪時(shí)表示,他們的主要目標(biāo)是“能夠提供定制的房屋。”
2014年1月,數(shù)幢使用3D打印技術(shù)建造的建筑亮相蘇州工業(yè)園區(qū)。這批建筑包括一棟面積1100平方米的別墅和一棟6層居民樓。這些建筑的墻體由大型3D打印機(jī)層層疊加噴繪而成,而打印使用的“油墨”則由建筑垃圾制成。
2015年7月17日上午,由3D打印的模塊新材料別墅現(xiàn)身西安,建造方在三個(gè)小時(shí)完成了別墅的搭建。據(jù)建造方介紹,這座三個(gè)小時(shí)建成的精裝別墅,只要擺上家具就能拎包入住。
汽車(chē)行業(yè)
2014年9月15日,世界上已經(jīng)出現(xiàn)3D打印建筑、裙帽以及珠寶等,第一輛3D打印汽車(chē)也終于面世。這輛汽車(chē)只有40個(gè)零部件,建造它花費(fèi)了44個(gè)小時(shí),最低售價(jià)1.1萬(wàn)英鎊(約合人民幣11萬(wàn)元)。
世界第一臺(tái)3D打印車(chē)已經(jīng)問(wèn)世——這輛由美國(guó)Local Motors公司設(shè)計(jì)制造、名叫“Strati”的小巧兩座家用汽車(chē)開(kāi)啟了汽車(chē)行業(yè)新篇章。這款創(chuàng)新產(chǎn)品在為期六天的2014美國(guó)芝加哥國(guó)際制造技術(shù)展覽會(huì)上公開(kāi)亮相。
用3D打印技術(shù)打印一輛斯特拉提轎車(chē)并完成組裝需時(shí)44小時(shí)。整個(gè)車(chē)身上靠3D打印出的部件總數(shù)為40個(gè),相較傳統(tǒng)汽車(chē)20000多個(gè)零件來(lái)說(shuō)可謂十分簡(jiǎn)潔。充滿曲線的車(chē)身由先由黑色塑料制造,再層層包裹碳纖維以增加強(qiáng)度,這一制造設(shè)計(jì)尚屬首創(chuàng)。汽車(chē)由電池提供動(dòng)力,最高時(shí)速約64公里,車(chē)內(nèi)電池可供行駛190至240公里。
盡管汽車(chē)的座椅、輪胎等可更換部件仍以傳統(tǒng)方式制造,但用3D制造這些零件的計(jì)劃已經(jīng)提上日程。制造該轎車(chē)的車(chē)間里有一架超大的3D打印機(jī),能打印長(zhǎng)3米、寬1.5米、高1米的大型零件,而普通的3D打印機(jī)只能打印25立方厘米大小的東西。
2014年10月29日,在芝加哥舉行的國(guó)際制造技術(shù)展覽會(huì)上,美國(guó)亞利桑那州的Local Motors汽車(chē)公司現(xiàn)場(chǎng)演示世界上第一款3D打印電動(dòng)汽車(chē)的制造過(guò)程。這款電動(dòng)汽車(chē)名為“Strati”,整個(gè)制造過(guò)程僅用了45個(gè)小時(shí)。Strati采用一體成型車(chē)身,最大速度可達(dá)到每小時(shí)40英里(約合每小時(shí)64公里),一次充電可行駛120到150英里(約合190到240公里)。Strati只有49個(gè)零部件,動(dòng)力傳動(dòng)系統(tǒng)、懸架、電池、輪胎、車(chē)輪、線路、電動(dòng)馬達(dá)和擋風(fēng)玻璃采用傳統(tǒng)技術(shù)制造,包括底盤(pán)、儀表板、座椅和車(chē)身在內(nèi)的余下部件均由3D打印機(jī)打印,所用材料為碳纖維增強(qiáng)熱塑性塑料。Strati的車(chē)身一體成型,由3D打印機(jī)打印,共有212層碳纖維增強(qiáng)熱塑性塑料。辛辛那提公司負(fù)責(zé)提供制造Strati使用的大幅面增材制造3D打印機(jī),能夠打印3英尺×5英尺×10英尺(約合90厘米×152厘米×305厘米)的零部件。
最近來(lái)自美國(guó)舊金山的Divergent Microfactories(DM)公司推出了世界上首款3D打印超級(jí)跑車(chē)“刀鋒(Blade)”。該公司表示此款車(chē)由一系列鋁制“節(jié)點(diǎn)”和碳纖維管材拼插相連,輕松組裝成汽車(chē)底盤(pán),因此更加環(huán)保。
Blade 搭載一臺(tái)可使用汽油或壓縮天然氣為燃料的雙燃料700馬力發(fā)動(dòng)機(jī)。此外由于整車(chē)質(zhì)量很輕,整車(chē)質(zhì)量?jī)H為1400磅(約合0.64噸),從靜止加速到每小時(shí)60英里(96公里)僅用時(shí)兩秒,輕松躋身頂尖超跑行列。
2015年7月,美國(guó)舊金山的Divergent Microfactories(DM)公司推出了世界上首款3D打印超級(jí)跑車(chē)“刀鋒(Blade)”。
電子行業(yè)
2014年11月10日,全世界首款3D打印的筆記本電腦已開(kāi)始預(yù)售了,它允許任何人在自己的客廳里打印自己的設(shè)備,價(jià)格僅為傳統(tǒng)產(chǎn)品的一半。
這款筆記本電腦名為Pi-Top,將會(huì)到2015年五月才會(huì)正式推出。但是,通過(guò)口耳相傳,它已在兩周內(nèi)累計(jì)獲得了7.6萬(wàn)英鎊的預(yù)訂單。
增材制造工程
增材制造工程(Additive Manufacturing Engineering)是中國(guó)普通高等學(xué)校的一個(gè)本科專(zhuān)業(yè),該專(zhuān)業(yè)于2021年被列入普通高等學(xué)校本科專(zhuān)業(yè)目錄的新專(zhuān)業(yè)名單。以下是對(duì)增材制造工程專(zhuān)業(yè)的詳細(xì)解析:
一、專(zhuān)業(yè)定義
增材制造工程俗稱(chēng)3D打印,融合了計(jì)算機(jī)輔助設(shè)計(jì)、材料加工與成型技術(shù),以數(shù)字模型文件為基礎(chǔ),通過(guò)軟件與數(shù)控系統(tǒng)將專(zhuān)用的金屬材料、非金屬材料以及生物材料,按照擠壓、燒結(jié)、熔融、光固化、噴射等方式逐層堆積,獲得實(shí)體物品的制造技術(shù)。這種通過(guò)軟件控制自動(dòng)化機(jī)構(gòu)實(shí)現(xiàn)材料累加的制造方法,可以制備傳統(tǒng)方法無(wú)法制備的復(fù)雜構(gòu)件,涵蓋計(jì)算科學(xué)、智能控制、材料工程等多門(mén)學(xué)科和方向。
二、主干學(xué)科與涉及領(lǐng)域
增材制造工程專(zhuān)業(yè)涉及的主干學(xué)科包括機(jī)械工程、控制科學(xué)與工程、力學(xué)、材料科學(xué)與工程等。該專(zhuān)業(yè)服務(wù)于中國(guó)制造強(qiáng)國(guó)戰(zhàn)略,助力國(guó)家制造業(yè)創(chuàng)新能力提升,面向航空航天、軌道交通、汽車(chē)、醫(yī)療、教育、建筑、藝術(shù)、工業(yè)制造等戰(zhàn)略新興產(chǎn)業(yè)領(lǐng)域,具有廣闊的應(yīng)用前景。
三、專(zhuān)業(yè)培養(yǎng)目標(biāo)
增材制造工程專(zhuān)業(yè)旨在培養(yǎng)德智體美勞全面發(fā)展,掌握扎實(shí)的科學(xué)文化基礎(chǔ)和產(chǎn)品三維設(shè)計(jì),增材制造材料、工藝和設(shè)備等知識(shí),具備增材零部件設(shè)計(jì)、制造及后處理等能力,具有工匠精神和信息素養(yǎng)的高素質(zhì)技術(shù)技能人才。畢業(yè)生能夠從事產(chǎn)品數(shù)字化設(shè)計(jì)、增材制造工藝制訂與實(shí)施、增材制造設(shè)備操作與維護(hù)、增材制造產(chǎn)品后處理、增材制造技術(shù)服務(wù)與推廣、增材制造設(shè)備裝調(diào)等工作。
四、應(yīng)用領(lǐng)域與前景
增材制造技術(shù)在多個(gè)領(lǐng)域得到廣泛應(yīng)用,如醫(yī)療、航空航天、汽車(chē)制造等。在醫(yī)療領(lǐng)域,它可以用來(lái)制造個(gè)性化的假肢、牙齒、骨骼支架等;在航空航天領(lǐng)域,增材制造技術(shù)可以用來(lái)制造輕量化的零部件,提高飛機(jī)的燃油效率;在汽車(chē)制造領(lǐng)域,它可以用于快速制造零部件和原型。此外,增材制造技術(shù)還可用于建筑、衛(wèi)生潔具、消費(fèi)品制造等領(lǐng)域。
隨著增材制造技術(shù)的快速發(fā)展和成本的降低,其應(yīng)用前景更加廣闊。市場(chǎng)研究機(jī)構(gòu)的預(yù)測(cè)表明,全球增材制造市場(chǎng)規(guī)模在未來(lái)幾年內(nèi)將持續(xù)增長(zhǎng),年復(fù)合增長(zhǎng)率較高。因此,增材制造工程專(zhuān)業(yè)的畢業(yè)生在市場(chǎng)上享有較高的需求,可以在高科技企業(yè)、航空航天、醫(yī)療器械、汽車(chē)等領(lǐng)域找到工作機(jī)會(huì)。
五、總結(jié)
增材制造工程專(zhuān)業(yè)是一個(gè)多學(xué)科交叉融合的新興專(zhuān)業(yè),結(jié)合了計(jì)算機(jī)輔助設(shè)計(jì)、材料加工與成型技術(shù)等多個(gè)領(lǐng)域的知識(shí)。該專(zhuān)業(yè)致力于培養(yǎng)具備增材制造相關(guān)知識(shí)和技能的高素質(zhì)技術(shù)技能人才,滿足制造業(yè)轉(zhuǎn)型升級(jí)對(duì)人才的需求。隨著增材制造技術(shù)的不斷發(fā)展和應(yīng)用領(lǐng)域的不斷拓展,增材制造工程專(zhuān)業(yè)的畢業(yè)生將擁有廣闊的就業(yè)前景和發(fā)展空間。
專(zhuān)業(yè)
增材制造專(zhuān)業(yè),也被稱(chēng)為增材制造工程或3D打印技術(shù)專(zhuān)業(yè),是一個(gè)多學(xué)科交叉融合的新興專(zhuān)業(yè)。以下是對(duì)該專(zhuān)業(yè)的詳細(xì)介紹:
一、專(zhuān)業(yè)定義與背景
增材制造專(zhuān)業(yè)融合了計(jì)算機(jī)輔助設(shè)計(jì)、材料加工與成型技術(shù),以數(shù)字模型文件為基礎(chǔ),通過(guò)逐層堆積材料的方式獲得實(shí)體物品的制造技術(shù)。這一專(zhuān)業(yè)于2021年被列入普通高等學(xué)校本科專(zhuān)業(yè)目錄的新專(zhuān)業(yè)名單,是中國(guó)普通高等學(xué)校開(kāi)設(shè)的本科專(zhuān)業(yè)。增材制造技術(shù)(3D打印)被視為未來(lái)制造業(yè)發(fā)展的重要方向,具有廣闊的應(yīng)用前景和市場(chǎng)需求。
二、技術(shù)原理與特點(diǎn)
技術(shù)原理:通過(guò)軟件與數(shù)控系統(tǒng),將專(zhuān)用材料逐層堆積,最終獲得實(shí)體物品。
特點(diǎn):增材制造技術(shù)無(wú)需輔助工具即可在較短時(shí)間內(nèi)制造復(fù)雜幾何零件,能夠簡(jiǎn)化產(chǎn)品的制造程序,縮短產(chǎn)品研發(fā)周期,提高生產(chǎn)效率并降低成本。
三、學(xué)科交叉與課程設(shè)置
學(xué)科交叉:增材制造專(zhuān)業(yè)涉及機(jī)械工程、控制科學(xué)與工程、力學(xué)、材料科學(xué)與工程等多個(gè)學(xué)科。
課程設(shè)置:包括高等數(shù)學(xué)、大學(xué)英語(yǔ)、機(jī)械制圖、理論力學(xué)、材料力學(xué)、機(jī)械原理、機(jī)械設(shè)計(jì)等基礎(chǔ)課程,以及增材制造技術(shù)概論、產(chǎn)品逆向設(shè)計(jì)、產(chǎn)品三維設(shè)計(jì)、增材制造設(shè)備與工藝、增材制造材料及應(yīng)用、增材制造結(jié)構(gòu)優(yōu)化與工藝仿真、增材制件后處理與檢測(cè)等專(zhuān)業(yè)核心課程。
四、就業(yè)方向與前景
就業(yè)方向:畢業(yè)生可在航空航天、汽車(chē)、醫(yī)療設(shè)備等領(lǐng)域找到工作,擔(dān)任設(shè)計(jì)師、工程師等職位。還可選擇成為教師或培訓(xùn)師。隨著增材制造技術(shù)的普及,教育和培訓(xùn)領(lǐng)域的需求也在增長(zhǎng)。
就業(yè)前景:增材制造技術(shù)的就業(yè)前景非常廣闊。市場(chǎng)研究機(jī)構(gòu)的預(yù)測(cè)表明,全球增材制造市場(chǎng)規(guī)模將持續(xù)增長(zhǎng),專(zhuān)業(yè)人才需求也將增加。畢業(yè)生能在增材制造等領(lǐng)域從事產(chǎn)品設(shè)計(jì)、技術(shù)服務(wù)、設(shè)備維護(hù)等工作。
五、發(fā)展趨勢(shì)與挑戰(zhàn)
技術(shù)創(chuàng)新:增材制造技術(shù)仍在不斷進(jìn)行技術(shù)創(chuàng)新,未來(lái)可能會(huì)采用更多的智能化和自動(dòng)化技術(shù),如機(jī)器學(xué)習(xí)和人工智能等,以提高制造的精度和效率。
產(chǎn)業(yè)規(guī)?;?/strong>增材制造的產(chǎn)業(yè)規(guī)模正在不斷擴(kuò)大,未來(lái)可能會(huì)形成更加完整的產(chǎn)業(yè)鏈和生態(tài)系統(tǒng)。
應(yīng)用領(lǐng)域擴(kuò)展:隨著技術(shù)的進(jìn)步和應(yīng)用的需求,增材制造可能會(huì)擴(kuò)展到更多的領(lǐng)域,如汽車(chē)、電子、消費(fèi)品等。
可持續(xù)性和環(huán)保:增材制造技術(shù)具有可持續(xù)性和環(huán)保的潛力,未來(lái)可能會(huì)進(jìn)一步關(guān)注環(huán)保和可持續(xù)性方面的發(fā)展。
六、開(kāi)設(shè)院校與教學(xué)資源
多所高校和職業(yè)院校都開(kāi)設(shè)了增材制造專(zhuān)業(yè),并擁有豐富的教學(xué)資源和實(shí)訓(xùn)條件。例如,一些院校擁有國(guó)家級(jí)的3D打印應(yīng)用技術(shù)協(xié)同創(chuàng)新中心,以及先進(jìn)的3D打印設(shè)備和實(shí)驗(yàn)室,為學(xué)生提供了良好的學(xué)習(xí)和實(shí)踐環(huán)境。
綜上所述,增材制造專(zhuān)業(yè)是一個(gè)具有廣闊應(yīng)用前景和發(fā)展空間的專(zhuān)業(yè),融合了多個(gè)學(xué)科的知識(shí)和技術(shù),旨在培養(yǎng)高素質(zhì)工程技術(shù)人才。對(duì)于對(duì)技術(shù)和制造感興趣的學(xué)生來(lái)說(shuō),這是一個(gè)值得考慮的選擇。
3D打印
增材制造,也被稱(chēng)為3D打印,是一種顛覆傳統(tǒng)制造方式的創(chuàng)新技術(shù)。以下是對(duì)增材制造3D打印的詳細(xì)解析:
一、定義與原理
增材制造基于三維模型數(shù)據(jù),采用與傳統(tǒng)減材制造技術(shù)(對(duì)原材料去除、切削、組裝的加工模式)完全相反的逐層疊加材料的方式,直接制造與相應(yīng)數(shù)字模型完全一致的三維物理實(shí)體模型。其基本原理為:以計(jì)算機(jī)三維設(shè)計(jì)模型為藍(lán)本,通過(guò)軟件分層離散和數(shù)控成形系統(tǒng),將三維實(shí)體變?yōu)槿舾蓚€(gè)二維平面,利用激光束、熱熔噴嘴等方式將粉末、樹(shù)脂等特殊材料進(jìn)行逐層堆積黏結(jié),最終疊加成形,制造出實(shí)體產(chǎn)品。
二、發(fā)展歷程
增材制造起源于美國(guó)。1940年,Perera提出了切割硬紙板并逐層粘結(jié)成三維地形圖的方法,直到20世紀(jì)80年代末,3D打印制造技術(shù)實(shí)現(xiàn)了根本性發(fā)展。1986年,美國(guó)人Hull發(fā)明了光固化技術(shù)(SLA)并成立了全球首家3D打印公司3D Systems,標(biāo)志著3D打印技術(shù)產(chǎn)業(yè)化的開(kāi)端。1995年德國(guó)Fraunhofer激光技術(shù)研究所(ILT)推出SLM技術(shù),激光技術(shù)開(kāi)始被應(yīng)用于增材制造并逐步普及,開(kāi)啟了3D打印大規(guī)模產(chǎn)業(yè)化試制和應(yīng)用階段。20世紀(jì)80年代末,我國(guó)啟動(dòng)開(kāi)展增材制造技術(shù)的研究,研制出系列增材制造裝備,并開(kāi)展產(chǎn)業(yè)化應(yīng)用。
三、技術(shù)特點(diǎn)
1、縮短新產(chǎn)品研發(fā)及實(shí)現(xiàn)周期:3D打印工藝成形過(guò)程由三維模型直接驅(qū)動(dòng),無(wú)需模具、夾具等輔助工具,可以極大地降低產(chǎn)品的研制周期,并節(jié)約昂貴的模具生產(chǎn)費(fèi)用,提高產(chǎn)品研發(fā)迭代速度。
2、可高效成形更為復(fù)雜的結(jié)構(gòu):3D打印的原理是將復(fù)雜的三維幾何體剖分為二維的截面形狀來(lái)疊層制造,故可以實(shí)現(xiàn)傳統(tǒng)精密加工較難實(shí)現(xiàn)的復(fù)雜構(gòu)件成形,提高零件成品率,同時(shí)提高產(chǎn)品質(zhì)量。
3、實(shí)現(xiàn)一體化、輕量化設(shè)計(jì):金屬3D打印技術(shù)的應(yīng)用可以?xún)?yōu)化復(fù)雜零部件的結(jié)構(gòu),在保證性能的前提下,將復(fù)雜結(jié)構(gòu)經(jīng)變換重新設(shè)計(jì)成簡(jiǎn)單結(jié)構(gòu),從而起到減輕重量的效果,3D打印技術(shù)也可實(shí)現(xiàn)構(gòu)件一體化成形,從而提升產(chǎn)品的可靠性。
4、材料利用率較高:與傳統(tǒng)精密加工技術(shù)相比,金屬3D打印技術(shù)可節(jié)約大量材料,特別是對(duì)較為昂貴的金屬材料而言,可節(jié)約較大的成本。
5、實(shí)現(xiàn)優(yōu)良的力學(xué)性能:基于3D打印快速凝固的工藝特點(diǎn),成形后的制件內(nèi)部冶金質(zhì)量均勻致密,無(wú)其他冶金缺陷;同時(shí)快速凝固的特點(diǎn),使得材料內(nèi)部組織為細(xì)小亞結(jié)構(gòu),成形零件可在不損失塑性的情況下使強(qiáng)度得到較大提高。
四、應(yīng)用領(lǐng)域
增材制造技術(shù)在各個(gè)領(lǐng)域都有廣泛的應(yīng)用,其中以航空航天、醫(yī)療、建筑、汽車(chē)等為代表。醫(yī)療領(lǐng)域是增材制造技術(shù)的重要應(yīng)用領(lǐng)域,利用增材制造技術(shù)可以實(shí)現(xiàn)個(gè)性化、定制化、智能化和生物相容性的醫(yī)療器械和人體組織的制造,提高效率、質(zhì)量和安全性。建筑領(lǐng)域是增材制造技術(shù)的新興應(yīng)用領(lǐng)域,利用增材制造技術(shù)可以實(shí)現(xiàn)多樣化、創(chuàng)新化、節(jié)能化和環(huán)?;慕ㄖY(jié)構(gòu)和裝飾材料的制造,提高美觀性、舒適性和可持續(xù)性。汽車(chē)領(lǐng)域是增材制造技術(shù)的潛在應(yīng)用領(lǐng)域,利用增材制造技術(shù)可以實(shí)現(xiàn)優(yōu)化化、模塊化、智能化和綠色化的汽車(chē)零部件和整車(chē)的制造,提高性能、可靠性和競(jìng)爭(zhēng)力。
五、未來(lái)趨勢(shì)
隨著技術(shù)的不斷進(jìn)步,增材制造正在向多元化、智能化方向發(fā)展。首先,多材料打印技術(shù)的進(jìn)一步成熟使得打印物體不僅限于單一材質(zhì)。這意味著,未來(lái)的3D打印機(jī)將能夠同時(shí)處理多種材質(zhì),甚至賦予打印對(duì)象不同的物理性質(zhì),例如柔軟性和堅(jiān)硬性的結(jié)合。其次,智能化是增材制造技術(shù)的另一個(gè)顯著趨勢(shì)。智能化的打印設(shè)備通過(guò)集成更加高效的軟件系統(tǒng),以及應(yīng)用人工智能算法,使得打印過(guò)程更加自動(dòng)化和高效。此外,增材制造技術(shù)的經(jīng)濟(jì)和環(huán)保優(yōu)勢(shì)也日益受到關(guān)注。較之傳統(tǒng)制造方式,3D打印能夠有效減少材料浪費(fèi),并降低庫(kù)存管理的復(fù)雜性。同時(shí),本地化生產(chǎn)降低了運(yùn)輸成本和碳排放,使得制造更具可持續(xù)性。
綜上所述,增?
內(nèi)容來(lái)自百科網(wǎng)