無黏流作小振幅無旋運動的動量方程為ρ0t+▽p=0(5.1)連續(xù)方程為 ρ0+▽TVt=0(5.2)對于均熵流,狀態(tài)方程為p=f(ρ)(5.3)式中:V=V(x,t)為相對于固定坐標系的流體質(zhì)點速度;p=p(x,t)和ρ=ρ(x,t)為從p0和ρ0算起的壓力和密度,設(shè)g為重力加速度...[繼續(xù)閱讀]
海量資源,盡在掌握
無黏流作小振幅無旋運動的動量方程為ρ0t+▽p=0(5.1)連續(xù)方程為 ρ0+▽TVt=0(5.2)對于均熵流,狀態(tài)方程為p=f(ρ)(5.3)式中:V=V(x,t)為相對于固定坐標系的流體質(zhì)點速度;p=p(x,t)和ρ=ρ(x,t)為從p0和ρ0算起的壓力和密度,設(shè)g為重力加速度...[繼續(xù)閱讀]
理想正壓流體的狀態(tài)方程由式(5.3)表示,可寫成p=c20ρ(5.10)當壓力p+p0等于氣化壓力pv時,出現(xiàn)空化區(qū)域,空化域隨著壓力的降低而增長,當壓力再回升到高于pv時,空化域再潰滅,為了考慮空化的影響。勃萊克和桑斯路[2]提出一個流體的連續(xù)模...[繼續(xù)閱讀]
為了用有限元方法進行計算,將控制方程寫成弱形式,動量方程(5.7)的弱形式為∫ΩFδuT(ρ0+▽p+ρ0g)dΩ=0(5.12)式中:δu為滿足在ΓFU上nTδu=0的任意位移場。對式(5.12)積分中第二項用散度定理,并利用邊界條件(式(5.9)),得∫ΩFδuTρ0d...[繼續(xù)閱讀]
要求在流體、結(jié)構(gòu)的交界面上法向位移相等,為此,在流體運動方程式(5.27)中,將位移分割成與交界面ΓSF垂直的法向分量(以下標B表示)和其余的分量(以下標F表示),將結(jié)構(gòu)運動方程式(5.29)中的位移也分解成交界面ΓSF的法向分量(也以下標...[繼續(xù)閱讀]
為檢驗上述方法,計算了理想的流體-結(jié)構(gòu)系統(tǒng)和混凝土重力壩的兩例。例1 一維系統(tǒng),結(jié)構(gòu)由一個自由度的振動器表示,流體為一維情形,無表面波,無旋運動,流體用二節(jié)點元素離散化,元素上壓力為常數(shù),位移線性變化,這種情形下,位移...[繼續(xù)閱讀]
[1] GregoryFenves,LuisM,Vargas-Lolf.NonlinearDynamicAnalysisofFluid-structureSystems[J].J.EngeeringMech1988,114,2:219-240. [2] BleichHHandSandlerIS.InteractionbetweenStructuresandBilinearFluids[J].Int.J.SolidsStructures,1970,6(5):517-639.[3] HamdiMA,Ousse...[繼續(xù)閱讀]
在理想流體中的運動方程為ρ=-▽p(6.1)連續(xù)方程為+▽·(ρu)=0或?qū)懗?u·▽ρ+ρ▽·u=0(6.2)前兩項為密度ρ的總變化率,由體積膨脹▽·u加以平衡。作線性化處理,設(shè)流體的密度ρ與靜止的均勻質(zhì)量狀態(tài)ρ0的差異為一小量,略去高階...[繼續(xù)閱讀]
艦艇的噪聲特性對其作戰(zhàn)性能是極為重要的,對于潛艇,噪聲特性對其隱蔽性尤其重要,國外致力于發(fā)展噪聲很小的安靜型艦艇,如英國為了降低核潛艇的噪聲,對核反應堆中冷卻循環(huán)水管引起的噪聲進行了研究,研制成一種干擾裝置,可以...[繼續(xù)閱讀]
本節(jié)考慮兩種形式的面元,即簡單的活塞元素和與結(jié)構(gòu)一致的元素。前者將殼體表面分割成一定的幾何形狀,如圖6.1所示的平面三角形等,其上的速度是均勻分布的,選元素的形心作為控制點,令該點的殼體值等于流體值。這種近似,使流...[繼續(xù)閱讀]
設(shè)殼體在已知外力Fke-iωt作用下的法向速度為i,可由式(6.76)算得,對流場采用活塞元素,用源匯分布,則元素上流體質(zhì)點的法向速度為Yijpj,可由式(6.86)算得,Yij為容抗,殼體在流體動力pjAj作用下產(chǎn)生的法向速度為-qijpjAj,可由式(6....[繼續(xù)閱讀]